Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Advancements of Polymer-Based Transdermal Drug Delivery Systems in Drug Bioavailability and Patient Compliance in United States

Hunny Dabas 1, Deepika Singh 1, Faraat Ali 2, Dipanjan Koley 1, Mohammed. Aslam 3, Esra Tariq Anwer Bayrakdar 3, Manvi Singh 1*

+ Author Affiliations

Journal of Angiotherapy 8(2) 1-10 https://doi.org/10.25163/angiotherapy.829436

Submitted: 25 December 2023  Revised: 11 February 2024  Published: 24 February 2024 

This review comprehensively discusses the transdermal drug delivery systems (TDDS) in the area of drug administration, for non-invasive, precise, and efficient delivery, overcoming oral limitations.

Abstract


Transdermal drug delivery system (TDDS) helps in overcoming drug molecule barriers such as particle size, lipophilicity, permeability, and transports the medication directly to the blood circulation by employing physical and chemical penetration enhancers using polymers. The use of skin as a drug delivery route is challenging due to the stratum corneum's barrier properties that restrict the therapeutic bioavailability of the medications. Both, natural and synthetic  polymers are used in TDDS to transport the medication into circulation via diffusion, and swelling control. TDDS is generally achieved by using transdermal patches containing one or more pharmaceutical active entities that are placed on unbroken skin for delivering active entities directly to the bloodstream by crossing the skin barrier. TDDS is the trendiest -delivery system as it is painless, non-invasive, self-administrative, avoids hepatic first-pass metabolism, and delivers poorly soluble drugs and increases the bioavailability. An overview of TDDS is provided in this review article, including its advantages over traditional dosage forms, limitations, different components of transdermal patches, modern techniques as well as transdermal products available in US market.

Keywords: Transdermal, Permeability, Transdermal patch, US Market, Polymer-based drug delivery

References


Abruzzo, A., Armenise, N., Bigucci, F., Cerchiara, T., Gösser, M. B., Samorì, C., ... & Luppi, B. (2017). Surfactants from itaconic acid: Toxicity to HaCaT keratinocytes in vitro, micellar solubilization, and skin permeation enhancement of hydrocortisone. International journal of pharmaceutics, 524(1-2), 9-15.

Abruzzo, A., Cerchiara, T., Luppi, B., & Bigucci, F. (2019). Transdermal delivery of antipsychotics: rationale and current status. CNS drugs, 33, 849-865.

Agarwal, A., Sharma, A., & Tripathi, G. (2020). Transdermal drug delivery system: an overview.

Akhtar, N., Singh, V., Yusuf, M., & Khan, R. A. (2020). Non-invasive drug delivery technology: Development and current status of transdermal drug delivery devices, techniques and biomedical applications. Biomedical Engineering/Biomedizinische Technik, 65(3), 243-272.

Al Hanbali, O. A., Khan, H. M. S., Sarfraz, M., Arafat, M., Ijaz, S., & Hameed, A. (2019). Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharmaceutica, 69(2), 197-215.

Alam, S., Aslam, M., Khan, A., Imam, S. S., Aqil, M., Sultana, Y., & Ali, A. (2016). Nanostructured lipid carriers of pioglitazone for transdermal application: from experimental design to bioactivity detail. Drug delivery, 23(2), 601-609.

Almazan, E. A., Castañeda, P. S., Torres, R. D., & Escobar-Chavez, J. J. (2020). Design and evaluation of losartan transdermal patch by using solid microneedles as a physical permeation enhancer. Iranian Journal of Pharmaceutical Research: IJPR, 19(1), 138.

Ammar, H. O., Ghorab, M., El-Nahhas, S. A., & Kamel, R. (2006). Design of a transdermal delivery system for aspirin as an antithrombotic drug. International journal of pharmaceutics, 327(1-2), 81-88.

Aslam, M., Aqil, M., Ahad, A., Najmi, A. K., Sultana, Y., & Ali, A. (2016). Application of Box–Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: Optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. Journal of Molecular Liquids, 219, 897-908.

Aslam, M., Imam, S. S., Aqil, M., Sultana, Y., & Ali, A. (2016). Levofloxacin loaded gelrite-cellulose polymer based sustained ocular drug delivery: formulation, optimization and biological study. Journal of Polymer Engineering, 36(8), 761-769.

Azmana, M., Arifin, M. A. B., & Mahmood, S. (2022). A Review on Transfersomes: Promising Carrier for Transdermal Drug Delivery.

Barichello, J. M., Handa, H., Kisyuku, M., Shibata, T., Ishida, T., & Kiwada, H. (2006). Inducing effect of liposomalization on the transdermal delivery of hydrocortisone: creation of a drug supersaturated state. Journal of controlled release, 115(1), 94-102.

Baviskar, D. T., Parik, V. B., & Jain, D. J. (2013). Development of Matrix-type transdermal delivery of lornoxicam: in vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats. PDA journal of pharmaceutical science and technology, 67(1), 9-22.

Bhowmik, D., Duraivel, S., & Kumar, K. S. (2012). Recent trends in challenges and opportunities in transdermal drug delivery system. The Pharma Innovation, 1(10).

Chandrashekar, N. S., & Rani, R. S. (2008). Physicochemical and pharmacokinetic parameters in drug selection and loading for transdermal drug delivery. Indian journal of pharmaceutical sciences, 70(1), 94.

Cherukuri, S., Batchu, U. R., Mandava, K., Cherukuri, V., & Ganapuram, K. R. (2017). Formulation and evaluation of transdermal drug delivery of topiramate. International journal of pharmaceutical investigation, 7(1), 10.

Chorghe, B. R., Deshpande, S. T., Shah, R. D., Korabu, S. S., & Motarwar, S. V. (2013). Transdermal drug delivery system: A review. Research Journal of Pharmaceutical Dosage Forms and Technology, 5(2), 65-69.

Drupal, K., Kumar, D. M., & Durga, D. (2016). Applicability of Natural Polymers in Transdermal Patches: Overview. World Journal of Pharmacy and Pharmaceutical Sciences, 5(12), 513-327.

Duraivel, S., Rajalakshmi, A. N., & Bhowmik, D. (2014). Formulation and evaluation of captopril Transdermal Patches.

Gajbhiye, K., Hakam, N., Rathod, G., & Tawar, M. (2021). Formulation and evaluation of transdermal patches of benidipine hydrochloride. Asian Journal of Pharmacy and Technology, 11(3), 207-212.

Gaur, P. K., Mishra, S., Purohit, S., & Dave, K. (2009). Transdermal drug delivery system: a review. Asian Journal of pharmaceutical and clinical Research, 2(1), 14-20.

Gorain, B., Al-Dhubiab, B. E., Nair, A., Kesharwani, P., Pandey, M., & Choudhury, H. (2021). Multivesicular liposome: A lipid-based drug delivery system for efficient drug delivery. Current pharmaceutical design, 27(43), 4404-4415.

Huang, Y., Wang, Y. J., Wang, Y., Yi, S., Fan, Z., Sun, L., & Zhang, M. (2015). Exploring naturally occurring ivy nanoparticles as an alternative biomaterial. Acta biomaterialia, 25, 268-283.

Jaber, S. A. (2023). Transdermal patches based on chitosan/hydroxypropyl methylcellulose and polyvinylpyrrolidone/hydroxypropyl methylcellulose polymer blends for gentamycin administration. Journal of advanced pharmaceutical technology & research, 14(3), 202-207.

Jadhav, A., Vidhate, M. S., More, A., Bhujbal, M. N., & Kshirsagar, D. S. (2018). Review on Transdermal Drug Delivery System: Novel Approches. Sch Acad J pharm, 7(9), 407-13.

Jain R. A. (2000). The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials, 21(23), 2475-2490.

Jassim, Z. E., Sulaiman, H. T., & Jabir, S. A. H. (2018). Transdermal drug delivery system: A review. J Pharm Res, 12(5), 802.

Joshi, S. C., Jasuja, N. D., & Jain, S. (2012). Enhancement of transdermal delivery system and antidiabetic approach: An overview. Int J Pharm, 2(1), 129-141.

Jung, H., Kim, M. K., Lee, J. Y., Choi, S. W., & Kim, J. (2020). Adhesive hydrogel patch with enhanced strength and adhesiveness to skin for transdermal drug delivery. Advanced Functional Materials, 30(42), 2004407.

Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews, 116(4), 2602-2663.

Kovácik, A., Kopecná, M., & Vávrová, K. (2020). Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert opinion on drug delivery, 17(2), 145-155.

Kumar, J. A., Pullakandam, N., Prabu, S. L., & Gopal, V. (2010). Transdermal drug delivery system: an overview. Int J Pharm Sci Rev Res, 3(2), 49-54.

Kumar, J. A., Pullakandam, N., Prabu, S. L., & Gopal, V. (2010). Transdermal drug delivery system: an overview. Int J Pharm Sci Rev Res, 3(2), 49-54.

Lakhan Lal Kashyap, Harish Jaiswal. (2023). Epidermal Growth Factor ReceptoraAnd Double-Imprinted Nanoparticles for Targeted Cancer Drug Delivery, Journal of Angiotherpay, 7(2), 1-8, 9408

Lashmar, U. T., & Manger, J. (1994). Investigation into the potential for iontophoresis facilitated transdermal delivery of acyclovir. International journal of pharmaceutics, 111(1), 73-82.

Mali, S. S., Patil, J. V., Kim, H., & Hong, C. K. (2018). Synthesis of SnO 2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale, 10(17), 8275-8284.

Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335-2346.

Mo, L., Lu, G., Ou, X., & Ouyang, D. (2022). Formulation and development of novel control release transdermal patches of carvedilol to improve bioavailability for the treatment of heart failure. Saudi journal of biological sciences, 29(1), 266-272.

Mohabe, V., Akhand, R., & Pathak, A. K. (2011). Preparation and evaluation of captopril transdermal patches. Bull. Pharm. Res, 1(2), 47-52.

Mohan, S., Tiwari, R., Jaimini, M., & Sharma, S. (2013). Transdermal drug delivery system: a review. Int J Ther Appl, 14, 22-8.

Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in polymer science, 32(8-9), 762-798.

Pal, O. P., Malviya, R., Bansal, V., & Sharma, P. K. (2010). Rosin an important polymer for drug delivery: A short review. International journal of pharmaceutical sciences review and research, 3(1), 35-37.

Pal, P., Thakur, R. S., Ray, S., & Mazumder, B. (2015). Design and development of a safer non-invasive transungual drug delivery system for topical treatment of onychomycosis. Drug development and industrial pharmacy, 41(7), 1095-1099.

Pastore, M. N., Kalia, Y. N., Horstmann, M., & Roberts, M. S. (2015). Transdermal patches: history, development and pharmacology. British journal of pharmacology, 172(9), 2179-2209.

Patel, R. P., Gaiakwad, D. R., & Patel, N. A. (2014). Formulation, optimization, and evaluation of a transdermal patch of heparin sodium. Drug discoveries & therapeutics, 8(4), 185-193.

Patil, O. B., Bhosale, S. P., Kabade, R. M., Kumbhar, P. S., Manjappa, A. S., & Disouza, J. I. (2021). Biodegradable polymer: basics, approaches to improve biodegradability and its pharmaceutical applications.

Paudel, K. S., Milewski, M., Swadley, C. L., Brogden, N. K., Ghosh, P., & Stinchcomb, A. L. (2010). Challenges and opportunities in dermal/transdermal delivery. Therapeutic delivery, 1(1), 109-131.

Prajapati, S. T., Patel, C. G., & Patel, C. N. (2011). Formulation and evaluation of transdermal patch of repaglinide. International Scholarly Research Notices, 2011.

Prausnitz, M. R., Mitragotri, S., & Langer, R. (2004). Current status and future potential of transdermal drug delivery. Nature reviews Drug discovery, 3(2), 115-124.

Priya, B., Manoj, K., & Navneet, K. (2023). A Review of Recent Advancement of Transdermal Drug Delivery Systems. International Journal of Research Development and Technology.

Prodduturi, S., Sadrieh, N., Wokovich, A. M., Doub, W. H., Westenberger, B. J., & Buhse, L. (2010). Transdermal delivery of fentanyl from matrix and reservoir systems: effect of heat and compromised skin. Journal of pharmaceutical sciences, 99(5), 2357-2366.

Radhakrishnan, V., GV, P. C., Singirikond, M., & Habibuddin, M. (2020). Transdermal Drug Delivery Technology–A Prospective Review. International Journal of Pharmacy Research & Technology (IJPRT), 10(2), 49-73.

Ramadon, D., McCrudden, M. T., Courtenay, A. J., & Donnelly, R. F. (2021). Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug delivery and translational research, 1-34.

Ramesh, S., & Velraj, M. (2018). An overview on novel approach of transdermal drug delivery systems. Drug Invention Today, 10(3).

Reddy, S. G., Kumar, B. S., Prashanthi, K., & Murthy, H. A. (2023). Fabricating transdermal film formulations of montelukast sodium with improved chemical stability and extended drug release. Heliyon, 9(3).

Ruela, A. L. M., Perissinato, A. G., Lino, M. E. D. S., Mudrik, P. S., & Pereira, G. R. (2016). Evaluation of skin absorption of drugs from topical and transdermal formulations. Brazilian Journal of Pharmaceutical Sciences, 52, 527-544.

Sandeepthi, N., & Satyanarayana, L. (2017). Transdermal Drug Delivery: An Overview. J. Glob. Trends Pharm. Sci, 8, 4537-4541.

Sandeepthi, N., & Satyanarayana, L. (2017). Transdermal Drug Delivery: An Overview. J. Glob. Trends Pharm. Sci, 8, 4537-4541.

Savoji, H., Mehdizadeh, A., & Ramazani Saadat Abadi, A. (2014). Transdermal nitroglycerin delivery using acrylic matrices: design, formulation, and in vitro characterization. International Scholarly Research Notices, 2014.

Sharma, D. (2018). Microneedles: an approach in transdermal drug delivery: a Review. PharmaTutor, 6(1), 7-15.

Sharma, K., Singh, V., & Arora, A. (2011). Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res, 3(2), 85-103.

Sirisha, V. N. L., Kirankumar, P., & ChinnaEswaraiah, M. (2012). Formulation and evaluation of transdermal patches of propranolol hydrochloride. IOSR Journal of Pharmacy, ISSN, 2250-3013.

Song, R., Murphy, M., Li, C., Ting, K., Soo, C., & Zheng, Z. (2018). Current development of biodegradable polymeric materials for biomedical applications. Drug design, development and therapy, 3117-3145.

Sudam, K. R., & Suresh, B. R. (2016). A Comprehensive Review on: Transdermal drug delivery systems. Int. J. Biomed. Adv. Res, 7, 147-159.

Tanwar, H., & Sachdeva, R. (2016). Transdermal drug delivery system: A review. International journal of pharmaceutical sciences and research, 7(6), 2274.

Teo, S. Y., Lee, S., Rathbone, M. J., & Gan, S. N. (2017). Polymeric materials as platforms for topical drug delivery: a review. Int Pharm Pharm Sci, 9, 14-20.

Thacharodi, D., & Rao, K. P. (1995). Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials, 16(2), 145-148.

Thacharodi, D., & Rao, K. P. (1996). Rate-controlling biopolymer membranes as transdermal delivery systems for nifedipine: development and in vitro evaluations. Biomaterials, 17(13), 1307-1311.

Tiwary, A. K., Sapra, B., & Jain, S. (2007). Innovations in transdermal drug delivery: formulations and techniques. Recent patents on drug delivery & formulation, 1(1), 23-36.

Wang, D. M., Lin, F. C., Chen, L. Y., & Lai, J. Y. (1998). Application of asymmetric TPX membranes to transdermal delivery of nitroglycerin. Journal of controlled release, 50(1-3), 187-195.

Watkinson, A. C. (2013). A commentary on transdermal drug delivery systems in clinical trials. Journal of pharmaceutical sciences, 102(9), 3082-3088.

Zaid Alkilani, A., McCrudden, M. T., & Donnelly, R. F. (2015). Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics, 7(4), 438-470.

Zhao, X., Liu, J. P., Zhang, X., & Li, Y. (2006). Enhancement of transdermal delivery of theophylline using microemulsion vehicle. International journal of pharmaceutics, 327(1-2), 58-64.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
609
View
0
Share