Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Evaluation of Cardiac Reserve Using Echocardiography for The Detection of Mild Cardiac Dysfunction in Mice - A Review

Sanjay Kumar Mire 1, Deepak Kumar Sahu 2

+ Author Affiliations

Journal of Angiotherapy 7(2) 1-11 https://doi.org/10.25163/angiotherapy.729396

Submitted: 03 November 2023  Revised: 04 December 2023  Published: 06 December 2023 

Echocardiography-based strain imaging offers early detection of cardiac abnormalities, treatment, and research strategy. 

Abstract


Assessing cardiac reserve in mice through echocardiography is essential for early detection of subtle cardiac issues and understanding potential treatments. Despite challenges such as precise measurements, strain imaging stress-based cardiac reserve assessment (SIS-CRA) is used in this study, providing insights into the heart's functional capacity by measuring myocardial deformation and contractility. This technique aids in identifying cardiac abnormalities early, allowing for timely interventions. Stress echocardiography is particularly valuable in heart failure and cardiotoxicity studies, where cardiac reserve plays a crucial role. Beyond diagnostics, this review explores applications in cardiovascular medicine and drug discovery, highlighting the method's revolutionary potential. Simulation analysis is incorporated to showcase its capability to improve research techniques and contribute to the detection of heart failure in mouse models.

Keywords: Cardiac, Echocardiography, Mild, Cardiac Dysfunction, Mice, Stress

References


Canada, J. M., Thomas, G. K., Trankle, C. R., Carbone, S., Billingsley, H., Van Tassell, B. W., ... & Abbate, A. (2020). Increased C-reactive protein is associated with the severity of thoracic radiotherapy-induced cardiomyopathy. Cardio-Oncology, 6, 1-6.

Chambers, K. T., Cooper, M. A., Swearingen, A. R., Brookheart, R. T., Schweitzer, G. G., Weinheimer, C. J., ... & Finck, B. N. (2021). Myocardial Lipin 1 knockout in mice approximates cardiac effects of human LPIN1 mutations. JCI insight, 6(9).

Collins, K. A., Korcarz, C. E., & Lang, R. M. (2003). Use of echocardiography for the phenotypic assessment of genetically altered mice. Physiological genomics, 13(3), 227-239.

Daniels, A., Van Bilsen, M., Janssen, B. J. A., Brouns, A. E., Cleutjens, J. P. M., Roemen, T. H. M., ... & Van Nieuwenhoven, F. A. (2010). Impaired cardiac functional reserve in type 2 diabetic db/db mice is associated with metabolic, but not structural, remodelling. Acta physiologica, 200(1), 11-22.

Davis, M. B., Arany, Z., McNamara, D. M., Goland, S., & Elkayam, U. (2020). Peripartum cardiomyopathy: JACC state-of-the-art review. Journal of the American College of Cardiology, 75(2), 207-221.

De Lucia, C., Wallner, M., Eaton, D. M., Zhao, H., Houser, S. R., & Koch, W. J. (2019). Echocardiographic strain analysis for the early detection of left ventricular systolic/diastolic dysfunction and dyssynchrony in a mouse model of physiological aging. The Journals of Gerontology: Series A, 74(4), 455-461.

Del Buono, M. G., Arena, R., Borlaug, B. A., Carbone, S., Canada, J. M., Kirkman, D. L., ... & Abbate, A. (2019). Exercise intolerance in patients with heart failure: JACC state-of-the-art review. Journal of the American College of Cardiology, 73(17), 2209-2225.

Gardin, J. M., Siri, F. M., Kitsis, R. N., Edwards, J. G., & Leinwand, L. A. (1995). Echocardiographic assessment of left ventricular mass and systolic function in mice. Circulation research, 76(5), 907-914.

Gorelik, M., Lee, Y., Abe, M., Andrews, T., Davis, L., Patterson, J., ... & Arditi, M. (2019). IL-1 receptor antagonist, anakinra, prevents myocardial dysfunction in a mouse model of Kawasaki disease vasculitis and myocarditis. Clinical & Experimental Immunology, 198(1), 101-110.

Hammoudi, N., Ceccaldi, A., Haymann, J. P., Guedeney, P., Nicolas-Jilwan, F., Zeitouni, M., ... & Hatem, S. N. (2022). Altered cardiac reserve is a determinant of exercise intolerance in sickle cell anaemia patients. European Journal of Clinical Investigation, 52(1), e13664.

Hollenberg, S. M., & Singer, M. (2021). Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews Cardiology, 18(6), 424-434.

Kwiatkowski, G., Bar, A., Jasztal, A., & Chlopicki, S. (2021). MRI-based in vivo detection of coronary microvascular dysfunction before alterations in cardiac function induced by short-term high-fat diet in mice. Scientific Reports, 11(1), 18915.

Lane-Cordova, A. D., Khan, S. S., Grobman, W. A., Greenland, P., & Shah, S. J. (2019). Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review topic of the week. Journal of the American College of Cardiology, 73(16), 2106-2116.

Li, Z., Li, Y., Zhang, L., Zhang, X., Sullivan, R., Ai, X., ... & Chen, X. (2017). Reduced myocardial reserve in young X-linked muscular dystrophy mice diagnosed by two-dimensional strain analysis combined with stress echocardiography. Journal of the American Society of Echocardiography, 30(8), 815-827.

Ljubojevic-Holzer, S., Kraler, S., Djalinac, N., Abdellatif, M., Voglhuber, J., Schipke, J., ... & Sedej, S. (2022). Loss of autophagy protein ATG5 impairs cardiac capacity in mice and humans through diminishing mitochondrial abundance and disrupting Ca2+ cycling. Cardiovascular research, 118(6), 1492-1505.

Marshall, A. G., Neikirk, K., Vue, Z., Beasley, H. K., Garza-Lopez, E., Vang, L., ... & Reddy, A. K. (2023). Cardiovascular hemodynamics in mice with tumor necrosis factor receptor—associated factor 2 mediated cytoprotection in the heart. Frontiers in Cardiovascular Medicine, 10, 1064640.

Nguyen, I. T., Brandt, M. M., van de Wouw, J., van Drie, R. W., Wesseling, M., Cramer, M. J., ... & Verhaar, M. C. (2020). Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction. PLoS One, 15(5), e0232399.

Obokata, M., Reddy, Y. N., & Borlaug, B. A. (2020). Diastolic dysfunction and heart failure with preserved ejection fraction: understanding mechanisms by using noninvasive methods. JACC: Cardiovascular Imaging, 13(1 Part 2), 245-257.

Richards, D. A., Aronovitz, M. J., Calamaras, T. D., Tam, K., Martin, G. L., Liu, P., ... & Blanton, R. M. (2019). Distinct phenotypes induced by three degrees of transverse aortic constriction in mice. Scientific reports, 9(1), 5844.

Ritchie, R. H., & Abel, E. D. (2020). Basic mechanisms of diabetic heart disease. Circulation Research, 126(11), 1501-1525.

Roh, J., Hill, J. A., Singh, A., Valero-Muñoz, M., & Sam, F. (2022). Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models. Circulation Research, 130(12), 1906-1925.

Salhi, H. E., Shettigar, V., Salyer, L., Sturgill, S., Brundage, E. A., Robinett, J., ... & Biesiadecki, B. J. (2023). The lack of Troponin I Ser-23/24 phosphorylation is detrimental to in vivo cardiac function and exacerbates cardiac disease. Journal of Molecular and Cellular Cardiology, 176, 84-96.

Saraste, A., Kyto¨, V., Saraste, M., Vuorinen, T., Hartiala, J., & Saukko, P. (2006). Coronary flow reserve and heart failure in experimental coxsackievirus myocarditis. A transthoracic Doppler echocardiography study. American Journal of Physiology-Heart and Circulatory Physiology, 291(2), H871-H875.

Tu, Y., Li, Q., Zhou, Y., Ye, Z., Wu, C., Xie, E., ... & Gao, Y. (2022). Empagliflozin inhibits coronary microvascular dysfunction and reduces cardiac pericyte loss in db/db mice. Frontiers in Cardiovascular Medicine, 9, 995216.

Villalba-Orero, M., Garcia-Pavia, P., & Lara-Pezzi, E. (2022). Non-invasive assessment of HFpEF in mouse models: current gaps and future directions. BMC medicine, 20(1), 1-15.

Wang, S., Kandadi, M. R., & Ren, J. (2019). Double knockout of Akt2 and AMPK predisposes cardiac aging without affecting lifespan: Role of autophagy and mitophagy. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(7), 1865-1875.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
544
View
0
Share