Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Comparative Analysis of Epstein-Barr Virus EBNA-2 Sequence Variation in Nasopharyngeal Carcinoma and Other EBV-Related Tumors

Lee Wei Zheng1,2, Rabiatul Basria S. M. N. Mydin1*, Adam Azlan1,5 and Muhamad Yusri Musa3,4

+ Author Affiliations

Journal of Angiotherapy 7(1) 1-9 https://doi.org/10.25163/angiotherapy.719352

Submitted: 26 September 2023  Revised: 15 November 2023  Published: 23 November 2023 

Abstract


Epstein Barr virus (EBV) is a common gamma herpesvirus that has infected over 95% of the worldwide population and is associated with several diseases which includes Hodgkin lymphoma (HL), Burkitt’s lymphoma (BL), nasopharyngeal carcinoma (NPC) and gastric cancer (GC). Epstein Barr virus nuclear antigen 2 (EBNA-2) gene of EBV is pivotal for growth transformation process and EBV type differentiation. Variations of the EBNA-2 gene could affect EBV transformation. Thus, understanding the variations that occur could provide invaluable insights. Variations of the EBNA-2 gene of EBV from different countries and disease associated was identified by comparing the gene with the reference sequence of EBNA2 from EBV isolated from C666-1 with the accession KC617875. Out of 11 samples, KC440851 is the most diverged and distally related sample from the reference sample. Interestingly some disease share similarities within the EBNA-2 gene as in the case of BL and NPC. The divergence of ENBA-2 gene increases with respect to geographical region when compared to reference sample.

Keywords: cancer, disease, Epstein Barr virus (EBV), Epstein Barr virus nuclear antigen 2 (EBNA-2), variation

References


Banos, G., & Coffey, M. (2010). Genetic association between body energy measured throughout lactation and fertility in dairy cattle. Animal, 4(2), 189-199. doi:10.1017/S1751731109991182.

Borozan, I., Zapatka, M., Frappier, L., & Ferretti, V. (2018). Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma. Journal of virology, 92(2), e01239-17. https://doi.org/10.1128/JVI.01239-17.

Busse, Clemens, Regina Feederle, Martina Schnölzer, Uta Behrends, Josef Mautner, and Henri-Jacques Delecluse. 2010. “Epstein-Barr Viruses That Express a CD21 Antibody Provide Evidence That Gp350’s Functions Extend beyond B-Cell Surface Binding.” Journal of Virology 84 (2): 1139–47. https://doi.org/10.1128/JVI.01953-09.

Cheung, S.T., Huang, D.P., Hui, A.B.Y., Lo, K.W., Ko, C.W., Tsang, Y.S., Wong, N., Whitney, B.M. and Lee, J.C.K. (1999), Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int. J. Cancer, 83: 121-126. https://doi.org/10.1002/(SICI)1097-0215(19990924)83:1<121::AID-IJC21>3.0.CO;2-F.

Cohen, J. I., Wang, F., & Kieff, E. (1991). Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. Journal of virology, 65(5), 2545–2554. https://doi.org/10.1128/JVI.65.5.2545-2554.1991.

Cohen, J. I., Wang, F., Mannick, J., & Kieff, E. (1989). Epstein-Barr virus nuclear protein 2 is a key determinant of lymphocyte transformation. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9558–9562. https://doi.org/10.1073/pnas.86.23.9558.

Efron, Bradley, Elizabeth Halloran, and Susan Holmes. 1996. “Bootstrap Confidence Levels for Phylogenetic Trees.” Proceedings of the National Academy of Sciences 93 (23): 13429–13429. https://doi.org/10.1073/pnas.93.23.13429.

Felsenstein J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of molecular evolution, 17(6), 368–376. https://doi.org/10.1007/BF01734359.

Harada, S., Yalamanchili, R., & Kieff, E. (2001). Epstein-Barr virus nuclear protein 2 has at least two N-terminal domains that mediate self-association. Journal of virology, 75(5), 2482–2487. https://doi.org/10.1128/JVI.75.5.2482-2487.2001.

Krieger, Gat, Offir Lupo, Patricia Wittkopp, and Naama Barkai. 2022. “Evolution of Transcription Factor Binding through Sequence Variations and Turnover of Binding Sites.” Genome Research 32 (6): 1099–1111. https://doi.org/10.1101/gr.276715.122.

Lei, H., Li, T., Hung, G. C., Li, B., Tsai, S., & Lo, S. C. (2013). Identification and characterization of EBV genomes in spontaneously immortalized human peripheral blood B lymphocytes by NGS technology. BMC genomics, 14, 804. https://doi.org/10.1186/1471-2164-14-804.

Lin, Z., Wang, X., Strong, M. J., Concha, M., Baddoo, M., Xu, G., Baribault, C., Fewell, C., Hulme, W., Hedges, D., Taylor, C. M., & Flemington, E. K. (2013). Whole-genome sequencing of the Akata and Mutu Epstein-Barr virus strains. Journal of virology, 87(2), 1172–1182. https://doi.org/10.1128/JVI.02517-12.

Makarova, O., Contaldo, N., Paltrinieri, S., Kawube, G., Bertaccini, A., & Nicolaisen, M. (2012). DNA barcoding for identification of 'Candidatus Phytoplasmas' using a fragment of the elongation factor Tu gene. PloS one, 7(12), e52092. https://doi.org/10.1371/journal.pone.0052092.

Matthew P.T., & Razelle K. (2004). Epstein-Barr Virus and Cancer. Clin Cancer Res, 10(3), 803–821. https://doi.org/10.1158/1078-0432.CCR-0670-3.

Poulos, R. C., Olivier, J., & Wong, J. W. H. (2017). The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes. Nucleic acids research, 45(13), 7786–7795. https://doi.org/10.1093/nar/gkx463.

Samantha K. D., Priya S. V., Henry H. B. (2018). Primary Epstein-Barr virus infection. Journal of Clinical Virology volume 102, 84-92. https://doi.org/10.1016/j.jcv.2018.03.001.

Sugano, Naoyuki, Weiping Chen, M. Luisa Roberts, and Neil R. Cooper. 1997. “Epstein-Barr  Virus Binding to CD21 Activates the Initial Viral Promoter via NF-κB Induction.” Journal of Experimental Medicine 186 (5): 731–37. https://doi.org/10.1084/jem.186.5.731.

Takahashi K., & Nei M. (2000). Efficiencies of Fast Algorithms of Phylogenetic Inference Under the Criteria of Maximum Parsimony, Minimum Evolution, and Maximum Likelihood When a Large Number of Sequences Are Used. Molecular Biology and Evolution, 17(8), 1251–1258. https://doi.org/10.1093/oxfordjournals.molbev.a026408.

Thorley-Lawson D. A. (2015). EBV Persistence--Introducing the Virus. Current topics in microbiology and immunology, 390(Pt 1), 151–209. https://doi.org/10.1007/978-3-319-22822-8_8.

Vrieze S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2), 228–243. https://doi.org/10.1037/a0027127.

Wang, X., Wang, Y., Wu, G., Chao, Y., Sun, Z., & Luo, B. (2012). Sequence analysis of Epstein-Barr virus EBNA-2 gene coding amino acid 148-487 in nasopharyngeal and gastric carcinomas. Virology journal, 9, 49. https://doi.org/10.1186/1743-422X-9-49.

Womack J., & Jimenez M. (2015). Common questions about infectious mononucleosis. Am Fam Physician, 91(6):372-6.

Wu, D. Y., G. V. Kalpana, S. P. Goff, and W. H. Schubach. 1996. “Epstein-Barr Virus Nuclear Protein 2 (EBNA2) Binds to a Component of the Human SNF-SWI Complex, hSNF5/Ini1.” Journal of Virology 70 (9): 6020–28. https://doi.org/10.1128/JVI.70.9.6020-6028.1996.

Yalamanchili, R., Harada, S., & Kieff, E. (1996). The N-terminal half of EBNA2, except for seven prolines, is not essential for primary B-lymphocyte growth transformation. Journal of virology, 70(4), 2468–2473. https://doi.org/10.1128/JVI.70.4.2468-2473.1996.

Zeng, M. S., Li, D. J., Liu, Q. L., Song, L. B., Li, M. Z., Zhang, R. H., Yu, X. J., Wang, H. M., Ernberg, I., & Zeng, Y. X. (2005). Genomic sequence analysis of Epstein-Barr virus strain GD1 from a nasopharyngeal carcinoma patient. Journal of virology, 79(24), 15323–15330. https://doi.org/10.1128/JVI.79.24.15323-15330.2005.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
398
View
0
Share