Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Optimizing The Protocol For Extraction Of Bioactive Components From Hibiscus Sabdariffa With Potent Antioxidant Activity

Nur Royhaila Mohamad *1, Farrah Payyadhah Borhan 2, Mohd Shahrizi Razali 3, Roswanira Abdul Wahab 4

+ Author Affiliations

Journal of Angiotherapy 7(1) 1-9 https://doi.org/10.25163/angiotherapy.719346

Submitted: 09 September 2023  Revised: 04 October 2023  Published: 16 October 2023 

Utilize statistical methods to determine which different variables impact the response to the extraction of roselle.

Abstract


The extract of Hibiscus sabdariffa (HS) also known as roselle from the Malvaceae family is prized for its exceptionally high contents of polyphenols and anthocyanins, the calyces of HS being one of the many sources of natural antioxidants. Considering the numerous health benefits associated with the consumption of such compounds as well its broad application in the food industry, the development of an extraction protocol for such compounds from HS at high yields and antioxidant activity merits scientific relevance. In this study, the optimum conditions to achieve such goals were established by the method of response surface methodology (RSM) using three independent variables: time (30, 165, and 300 min), temperature (50, 70, and 90°C) and ethanol concentration (60, 75 and 90%). A Box-Behnken design (BBD) was utilized to determine the optimum condition that yielded the highest extraction yield and antioxidant activity measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical inhibition activity test. The results showed that under optimum conditions [300 min, 70°C in 90% ethanol concentration and 30 min, 70°C in 90% ethanol concentration], a corresponding 48.44% and 87.93% were obtained for the extraction yield and DPPH activity of HS, respectively; hence verifying the suitability of RSM for optimizing the extraction of HS.

Keywords: Hibiscus Sabdariffa; DPPH; extraction yield; antioxidant; response surface methodology

References


Abd Manan, F.M., Abd Rahman, I.N., Marzuki, N.H.C., Mahat, N.A., Huyop, F., and Abdul Wahab, R. (2016). Statistical modelling of eugenol benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Pro. Bioche. 51(2), 249−262.

Abdul Wahab, R., Basri, M., Abdul Rahman, R.N.Z.R., Salleh, A.B., Abdul Rahman, M.B., and Leow, T.C. (2014). Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotech. Biotech. Equip. 28(6), 1065-1072.

Abt, V., Barz, T., Cruz-Bournazou, M. N., Herwig, C., Kroll, P., Möller, J., and Schenkendorf, R. (2018). Model-based tools for optimal experiments in bioprocess engineering. Cur. Op. Chem. Eng. 22, 244-252.

Alara, O. R., Abdurahman, N. H., and Olalere, O. A. (2018). Ethanolic extraction of bioactive compounds from Vernonia amygdalina leaf using response surface methodology as an optimization tool. J. Food Meas. Charac. 12(2), 1107-1122.

Amado, I.R., Franco, D., Sánchez, M., Zapata, C., and Vázquez, J.A. (2014). Optimization of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 165, 290-9.

Anastácio, A., and Carvalho, I. S. (2013). Phenolics extraction from sweet potato peels: Key factors screening through a Placket–Burman design. Ind. Crops and Prod. 43, 99-105.

Andrade, T. A., Hamerski, F., Fetzer, D. E. L., Roda-Serrat, M. C., Corazza, M. L., Norddahl, B., and Errico, M. (2021). Ultrasound-assisted pressurized liquid extraction of anthocyanins from Aronia melanocarpa pomace. Sep. Purification Tech. 276, 119290

Bako, I.G., Mabrouk, M.A., and Abubakar, A. (2009). Antioxidant effect of ethanolic seed extract of Hibiscus sabdariffa Linn (Malvaceae) alleviate the toxicity induced by chronic administration of sodium nitrate on some haematological parameters in Wistars rats. Adv. J. Food Sci. Tech. 1(1), 39–42.

Campone, L., Celano, R., Piccinelli, A. L., Pagano, I., Carabetta, S., Di Sanzo, R., and Rastrelli, L. (2018). Response surface methodology to optimize supercritical carbon dioxide/co-solvent extraction of brown onion skin by-product as source of nutraceutical compounds. Food Chem. 269, 495-502.

Corrales, M., Toepfl, S., Butz, P., Knorr, D., and Tauscher, B. (2008). Extraction of anthocyanins from grape by-products assisted by ultrasonic, high hydrostatic pressure or pulsed electric fields. A comparison. Inno. Food Sci. Emer. Tech. 9, 85−91.

Da-Costa-Rocha, I., Bernd, B., Hartwig, S., Ivo, P., and Michael, H. (2014). Hibiscus sabdariffa L-A phytochemical and pharmacological review. Food Che. 165, 424-443.

El-Boulifi, N., Aracil, J., and Martinez, M. (2014). Optimization of lipase-catalyzed synthesis of glycerol monooleate by response surface methodology. Biomass Bioenergy. 61,179–186.

Gong, Y., Hou, Z., Gao, Y., Xue, Y., Liu, X., and Liu, G. (2012). Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food Bioprod. Proc. 90, 9–16.

Isah, A. A., Mahat, N. A., Jamalis, J., Attan, N., Zakaria, I. I., Huyop, F., and Wahab, R. A. (2017). Synthesis of geranyl propionate in a solvent-free medium using Rhizomucor miehei lipase covalently immobilized on chitosan–graphene oxide beads. Prep. Bioche. Biotech. 47(2), 199-210.

Kamaludin, N.H.I., Mun, L.S., and Sa’adi, R.A. (2016). Evaluation of antioxidant activity of some tropical fruit peel extracts: extraction conditions optimization of rambutan peel extracts. ARPN J. Eng. App. Sci. 11(3), 1623-1631

Kaur, B., Panesar, P. S., and Anal, A. K. (2022). Standardization of ultrasound assisted extraction for the recovery of phenolic compounds from mango peels. J. Food Sci. Tech. 59(7), 2813-2820.

Lee, J. W., Mo, E. J., Choi, J. E., Jo, Y. H., Jang, H., Jeong, J. Y., and Lee, M. K. (2016). Effect of Korean Red Ginseng extraction conditions on antioxidant activity, extraction yield, and ginsenoside Rg1 and phenolic content: optimization using response surface methodology. J. Ginseng Res. 40(3), 229-236.

Lee, L. S., Lee, N., Kim, Y. H., Lee, C. H., Hong, S. P., Jeon, Y. W., and Kim, Y. E. (2013). Optimization of ultrasonic extraction of phenolic antioxidants from green tea using response surface methodology. Molecules. 18(11), 13530-13545.

Liu, W., Yin, P., and Liu, X. (2014). Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA. Biores. Tech. 173, 266-271.

Liyana-Parthirana, C., and Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Che. 93, 47–56.

Lourenço, S. C., Moldão-Martins, M., and Alves, V. D. (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules. 24(22), 4132.

Majeed, M., Hussain, A. I., Chatha, S. A., Khosa, M. K., Kamal, G. M., Kamal, M. A., and Liu, M. (2016). Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J. Bio. Sci. 23(3), 389-396.

Marzuki, N.H.C., Mahat, N.A., Huyop, F., Aboul-Enein, H.Y., and Abdul Wahab, R. (2015). Modelling and optimization of Candida rugosa nanobioconjugates catalysed synthesis of methyl oleate by response surface methodology. Biotech. Biotech. Equip. 29(6),1113-1127.

Michiels, J.A., Claire, K., Joel, P., Jean, O., and Defraigne, J.D. (2012). Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Che. 130, 986–993.

Mishra, K., Ojha, H., and Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Che. 130(4), 1036-1043.

Mohamad, N.R., Mahat, N.A., Huyop, F., Aboul-Enein, H.Y., and Abdul Wahab, R. (2015). Response surface methodological approach for optimizing production of geranyl propionate catalyzed by carbon nanotubes nanobioconjugates. Biotech and Biotech. Equip. 29(4), 732-739

Mohamed, R., Fernandez, J., Pineda, M., and Aguilar, M. (2007). Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol. J. Food Sci. 72(3), 207–211.

Mourtzinos, I., Makris, D.P., Yannakopoulou, K., Kalogeropoulos, N., Michali, I., and Karathsnos, V.T. (2008). Thermal Stability of Anthocyanin Extract of Hibiscus sabdariffa L. in the Presence of β-Cyclodextrin. J. Agric. and Food Che. 56, 10303-10310.

Nekkaa, A., Benaissa, A., Lalaouna, A. E., Mutelet, F., and Canabady-Rochelle, L. (2021). Optimization of the extraction process of bioactive compounds from Rhamnus alaternus leaves using Box-Behnken experimental design. J. App. Res. Med. and Aromatic Plants. 25, 100345.

Pandey, A., Belwal, T., Sekar, K. C., Bhatt, I. D., and Rawal, R. S. (2018). Optimization of ultrasonic-assisted extraction (UAE) of phenolics and antioxidant compounds from rhizomes of Rheum moorcroftianum using response surface methodology (RSM). Ind. Crops and Prod. 119, 218-225.

Pompeau, D.R., Silva, E.M., and Rogez, H. (2009). Optimization of the solvent extraction of phenolic antioxidants from fruits of Euterpe oleracea using response surface methodology. Biores. Techn. 100, 6076−6082.

Prasad, K.N., Hassan, F.A., Yang, B., Kong, K.W., Ramanan, R.N., Azlan, A., and Ismail, A. (2011). Response surface optimization for the extraction of phenolic compounds and antioxidant capacities of underutilized Mangifera pajang Kosterm. Peels. Food Che. 128, 1121–1127.

Quispe-Fuentes, I., Uribe, E., López, J., Contreras, D., and Poblete, J. (2022). A study of dried mandarin (Clementina orogrande) peel applying supercritical carbon dioxide using co-solvent: Influence on oil extraction, phenolic compounds, and antioxidant activity. J. Food Pro. Preserv. 46(1), e16116.

Saldaña, M. D., Martinez, E. R., Sekhon, J. K., and Vo, H. (2021). The effect of different pressurized fluids on the extraction of anthocyanins and total phenolics from cranberry pomace. J. Supercritical Flu. 175, 105279.

Salminen, A., Ojala, J., Kaarniranta, K., and Kauppinen, A. (2012). Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell. Mole. Life Sci. 69, 2999–3013.

Wani, S. M., Jan, N., Wani, T. A., Ahmad, M., Masoodi, F. A., and Gani, A. (2017). Optimization of antioxidant activity and total polyphenols of dried apricot fruit extracts (Prunus armeniaca L.) using response surface methodology. J. Saudi Society of Agri. Sci. 16(2), 119-126.

Yang, Y.C., Yang, Z.W., Zhang, Z.H., Li, J., Zu, Y.G., and Fu, Y.J. (2013). Effect of acid hydrolysis in the microwave-assisted extraction of phenolic compounds from Geranium sibiricum Linne with the guidance of antibacterial activity. J. Med. Plants Res. 7(14), 819–830.

Yim, H.S., Chye, F.Y., Koo, S.M., Matanjun, P., How, S.E., and Ho, C.W. (2012). Optimization of extraction time and temperature for antioxidant activity of edible wild mushroom, Pleurotus porrigens. Food Bioprod. Proc. 90, 235–242.

Zhang, Z.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Jin, Z.; Qiu, C. (2022). Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods. 11, 2189.

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
708
View
0
Share