References
Adams, S. J., Henderson, R. D. E., Yi, X., & Babyn, P. (2020). Artificial intelligence solutions for analysis of X-ray images. Canadian Association of Radiologists Journal, 72(1), 60–72. https://doi.org/10.1177/0846537120941671
Alamuru, S., Reddy, G. S., & Raju, M. J. (2024). Artificial intelligence and machine learning for defect detection in castings. Journal of Physics Conference Series, 2837(1), 012079. https://doi.org/10.1088/1742-6596/2837/1/012079
Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299
Aminizadeh, S., Heidari, A., Dehghan, M., Toumaj, S., Rezaei, M., Navimipour, N. J., Stroppa, F., & Unal, M. (2024). Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service. Artificial Intelligence in Medicine, 149, 102779. https://doi.org/10.1016/j.artmed.2024.102779
Ashebir, D. A., Hendlmeier, A., Dunn, M., Arablouei, R., Lomov, S. V., Di Pietro, A., & Nikzad, M. (2024). Detecting Multi-Scale Defects in material extrusion Additive manufacturing of Fiber-Reinforced thermoplastic composites: A review of challenges and Advanced Non-Destructive Testing techniques. Polymers, 16(21), 2986. https://doi.org/10.3390/polym16212986
Borboni, A., Reddy, K. V. V., Elamvazuthi, I., Al-Quraishi, M. S., Natarajan, E., & Ali, S. S. A. (2023). The expanding role of artificial intelligence in collaborative robots for industrial applications: A systematic review of recent works. Machines, 11(1), 111. https://doi.org/10.3390/machines11010111
Bhati, D., Neha, F., & Amiruzzaman, M. (2024). A survey on Explainable Artificial intelligence (XAI) techniques for visualizing deep learning models in medical imaging. Journal of Imaging, 10(10), 239. https://doi.org/10.3390/jimaging10100239
Boppana, V. R. (2022, October 14). Machine Learning and AI Learning: Understanding the Revolution. https://acadexpinnara.com/index.php/JIT/article/view/368
Bayomi, N., & Fernandez, J. E. (2023). Eyes in the Sky: Drones Applications in the Built Environment under Climate Change Challenges. Drones, 7(10), 637. https://doi.org/10.3390/drones7100637
Cognominal, M., Patronymic, K., & Wankowicz, A. (2021, July 2). Evolving field of autonomous mobile robotics: technological advances and applications. https://fusionproceedings.com/fmr/1/article/view/28
Dandanelle, K., & Tomasson, M. (2018). Stories from construction inspections A case study of the challenges in the inspection process at a major construction company in Sweden. https://odr.chalmers.se/items/2e3e94e2-f3fd-4d37-8c32-c11f01bb63bf
Duarte, J. G., Duarte, M. G., Piedade, A. P., & Mascarenhas-Melo, F. (2025). Rethinking Pharmaceutical Industry with Quality by Design: Application in Research, Development, Manufacturing, and Quality Assurance. The AAPS Journal, 27(4). https://doi.org/10.1208/s12248-025-01079-w
Elizabeth, I., & Barshilia, H. C. (2024). A Comprehensive Review on Corrosion Detection Methods for Aircraft: Moving from Offline Methodologies to Real-Time Monitoring Combined with Digital Twin Technology. Engineering Science & Technology, 69–98. https://doi.org/10.37256/est.6120255638
Elenchezhian, M. R. P., Vadlamudi, V., Raihan, R., Reifsnider, K., & Reifsnider, E. (2021). Artificial intelligence in real-time diagnostics and prognostics of composite materials and its uncertainties—a review. Smart Materials and Structures, 30(8), 083001. https://doi.org/10.1088/1361-665x/ac099f
Escobar, C. A., Macias-Arregoyta, D., & Morales-Menendez, R. (2023). The decay of Six Sigma and the rise of Quality 4.0 in manufacturing innovation. Quality Engineering, 36(2), 316–335. https://doi.org/10.1080/08982112.2023.2206679
Eagar, R. W. a. T., Program, L. F. G. O., & Mit, L. F. G. O. P. A. (2016). Investing in quality?: identifying the true value of advanced weld inspection technology. https://dspace.mit.edu/handle/1721.1/104312
Fan, C. (2022). Evaluation of Classification for Project Features with Machine Learning Algorithms. Symmetry, 14(2), 372. https://doi.org/10.3390/sym14020372
George, A. S. (2024). AI-Enabled Intelligent Manufacturing: a path to increased productivity, quality, and insights. puirp.com. https://doi.org/10.5281/zenodo.13338085
Higham, C. F., Murray-Smith, R., Padgett, M. J., & Edgar, M. P. (2018). Deep learning for real-time single-pixel video. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-20521-y
Hanafi, A., Moawed, M., & Abdellatif, O. (2024). Advancing Sustainable Energy Management: A Comprehensive review of artificial intelligence techniques in building. Deleted Journal, 53(2), 26–46. https://doi.org/10.21608/erjsh.2023.226854.1196
Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2021). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management, 07(01), 83–111. https://doi.org/10.1142/s2424862221300040
Kalusivalingam, A. K., Sharma, A., Patel, N., & Singh, V. (2020, April 14). Enhancing predictive maintenance in manufacturing using machine learning algorithms and IoT-Driven data analytics. https://cognitivecomputingjournal.com/index.php/IJAIML-V1/article/view/50
Keleko, A. T., Kamsu-Foguem, B., Ngouna, R. H., & Tongne, A. (2022). Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis. AI And Ethics, 2(4), 553–577. https://doi.org/10.1007/s43681-021-00132-6
Kekäle, T., & Phusavat, K. (2010, June 21). Integrated ESSQ management?: as a part of excellent operational and business management—a framework, integration and maturity. OuluREPO. https://oulurepo.oulu.fi/handle/10024/35380
Kulawiak, K. E. (2021). Manufacturing the platform economy. An exploratory case study of MindSphere, the industrial digital platform from Siemens (Master's thesis).
Kaul, D., & Khurana, R. (2022). Ai-driven optimization models for e-commerce supply chain operations: Demand prediction, inventory management, and delivery time reduction with cost efficiency considerations. International Journal of Social Analytics, 7(12), 59-77.
Khan, A. A., Laghari, A. A., Li, P., Dootio, M. A., & Karim, S. (2023). The collaborative role of blockchain, artificial intelligence, and industrial internet of things in digitalization of small and medium-size enterprises. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28707-9
Lu, Y., Mathur, A. K., Blunt, B. A., Glüer, C. C., Will, A. S., Fuerst, T. P., Jergas, M. D., Andriano, K. N., Cummings, S. R., & Genant, H. K. (1996). Dual X-ray absorptiometry quality control: Comparison of visual examination and process-control charts. Journal of Bone and Mineral Research, 11(5), 626–637. https://doi.org/10.1002/jbmr.5650110510
Lee, J., Bagheri, B., & Kao, H. (2014). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001
Leberruyer, N., Bruch, J., Ahlskog, M., & Afshar, S. (2023). Toward Zero Defect Manufacturing with the support of Artificial Intelligence—Insights from an industrial application. Computers in Industry, 147, 103877. https://doi.org/10.1016/j.compind.2023.103877
Liang, C., Le, T., Ham, Y., Mantha, B. R., Cheng, M. H., & Lin, J. J. (2024). Ethics of artificial intelligence and robotics in the architecture, engineering, and construction industry. Automation in Construction, 162, 105369. https://doi.org/10.1016/j.autcon.2024.105369
Lee, S. L., O’Connor, T. F., Yang, X., Cruz, C. N., Chatterjee, S., Madurawe, R. D., Moore, C. M. V., Yu, L. X., & Woodcock, J. (2015). Modernizing Pharmaceutical Manufacturing: from Batch to Continuous Production. Journal of Pharmaceutical Innovation, 10(3), 191–199. https://doi.org/10.1007/s12247-015-9215-8
Luo, D., Wang, K., Wang, D., Sharma, A., Li, W., & Choi, I. H. (2025). Artificial intelligence in the design, optimization, and performance prediction of concrete materials: a comprehensive review. Npj Materials Sustainability, 3(1). https://doi.org/10.1038/s44296-025-00058-8
Liang, W., Tadesse, G. A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., & Zou, J. (2022). Advances, challenges and opportunities in creating data for trustworthy AI. Nature Machine Intelligence, 4(8), 669–677. https://doi.org/10.1038/s42256-022-00516-1
Lee, S. M., Lee, D., & Kim, Y. S. (2019). The quality management ecosystem for predictive maintenance in the Industry 4.0 era. International Journal of Quality Innovation, 5(1). https://doi.org/10.1186/s40887-019-0029-5
Liu, C., & Chien, C. (2012). An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing. Engineering Applications of Artificial Intelligence, 26(5–6), 1479–1486. https://doi.org/10.1016/j.engappai.2012.11.009
Love, P. E., Fang, W., Matthews, J., Porter, S., Luo, H., & Ding, L. (2023). Explainable artificial intelligence (XAI): Precepts, models, and opportunities for research in construction. Advanced Engineering Informatics, 57, 102024. https://doi.org/10.1016/j.aei.2023.102024
Laofor, C., & Peansupap, V. (2012). Defect detection and quantification system to support subjective visual quality inspection via a digital image processing: A tiling work case study. Automation in Construction, 24, 160–174. https://doi.org/10.1016/j.autcon.2012.02.012
Moleda, M., Malysiak-Mrozek, B., Ding, W., Sunderam, V., & Mrozek, D. (2023). From Corrective to Predictive Maintenance—A review of maintenance approaches for the power industry. Sensors, 23(13), 5970. https://doi.org/10.3390/s23135970
Murzin, S. P. (2024). Artificial Intelligence-Driven innovations in laser processing of metallic materials. Metals, 14(12), 1458. https://doi.org/10.3390/met14121458
Matveev, A. (2025). Artificial intelligence in Maritime fleet Management: Enhancing operational efficiency and cost reduction. The American Journal of Engineering and Technology, 07(03), 133–140. https://doi.org/10.37547/tajet/volume07issue03-13
Okuyelu, O., & Adaji, O. (2024). AI-driven real-time quality monitoring and process optimization for enhanced manufacturing performance. J. Adv. Math. Comput. Sci, 39(4), 81-89.
Patel, R. (2024). Implementing AI based quality inspection system to improve quality management system performance. Theseus. https://www.theseus.fi/handle/10024/873927
Pop, G. I., Titu, A. M., & Pop, A. B. (2023). Enhancing aerospace industry efficiency and sustainability: process integration and quality management in the context of industry 4.0. Sustainability, 15(23), 16206. https://doi.org/10.3390/su152316206
Roskladka, N., & Miragliotta, G. (2024, August 2). Artificial Intelligence for predictive maintenance. https://www.politesi.polimi.it/handle/10589/222753
Rane, N., Choudhary, S., & Rane, J. (2023). Artificial Intelligence (AI) and Internet of Things (IoT) - based sensors for monitoring and controlling in architecture, engineering, and construction: applications, challenges, and opportunities. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4642197
Rožanec, J. M., Križnar, K., Montini, E., Cutrona, V., Koehorst, E., Fortuna, B., Mladenic, D., & Emmanouilidis, C. (2023). Predicting operators’ fatigue in a human in the artificial intelligence loop for defect detection in manufacturing. IFAC-PapersOnLine, 56(2), 7609–7614. https://doi.org/10.1016/j.ifacol.2023.10.1157
Tien, J. M. (2017). Internet of Things, Real-Time decision making, and artificial intelligence. Annals of Data Science, 4(2), 149–178. https://doi.org/10.1007/s40745-017-0112-5
Sarkar, B., & Paul, R. K. (2025). AI for Advanced Manufacturing and Industrial Applications. https://doi.org/10.1007/978-3-031-86091-1
Shaban, A. A., & Zeebaree, S. R. (2025). Building Scalable Enterprise Systems: The Intersection of Web Technology, Cloud Computing, and AI Marketing.
Sim, K. L., & Rogers, J. W. (2008). Implementing lean production systems: barriers to change. Management Research News, 32(1), 37–49. https://doi.org/10.1108/01409170910922014
Senthil, K., Arockiarajan, A., Palaninathan, R., Santhosh, B., & Usha, K. (2013). Defects in composite structures: Its effects and prediction methods – A comprehensive review. Composite Structures, 106, 139–149. https://doi.org/10.1016/j.compstruct.2013.06.008
Shneiderman, B. (2020). Bridging the gap between ethics and practice. ACM Transactions on Interactive Intelligent Systems, 10(4), 1–31. https://doi.org/10.1145/3419764
Sani, A. R., Zolfagharian, A., & Kouzani, A. Z. (2024). Artificial Intelligence-Augmented Additive Manufacturing: Insights on Closed-Loop 3D Printing. Advanced Intelligent Systems. https://doi.org/10.1002/aisy.202400102\
Toward Intelligent monitoring in IoT: AI Applications for Real-Time analysis and Prediction. (2024). IEEE Journals & Magazine | IEEE Xplore. https://ieeexplore.ieee.org/abstract/document/10471529/
Thakfan, A., & Salamah, Y. B. (2024). Artificial-Intelligence-Based Detection of defects and faults in Photovoltaic Systems: a survey. Energies, 17(19), 4807. https://doi.org/10.3390/en17194807
Wang, Y., Ma, H. S., Yang, J. H., & Wang, K. S. (2017). Industry 4.0: a way from mass customization to mass personalization production. Advances in manufacturing, 5(4), 311-320.