Integrative Biomedical Research | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Bacteriological Profile of Bacteremia and Antibiotic Resistance Patterns of the Isolated Pathogens

Abla Hannachi-Hecini¹ 4*, Aya Mekimah², Soundous Gharbi², Houcine Laouar³ 4, Chafia Bentchouala³ 4

+ Author Affiliations

Journal of Angiotherapy 9 (1) 1-8 https://doi.org/10.25163/angiotherapy.9110176

Submitted: 08 January 2025 Revised: 10 March 2025  Published: 14 March 2025 


Abstract

Background: Bacteremia is a diagnostic and therapeutic emergency. Understanding the predominant bacterial species responsible and their antibiotic susceptibility profiles is essential for guiding empirical antibiotic therapy. Methods: This study included both retrospective and prospective components conducted at the Benbadis University Hospital Center in Constantine from 2023 to 2024. It involved all hospitalized patients with at least one positive blood culture. Bacterial identification was performed using conventional methods and the Vitek 2 system. Antibiotic susceptibility testing was conducted via antibiogram following CLSI guidelines. Results: A total of 1,419 bacterial strains were isolated from 759 male and 660 female patients (sex ratio = 1.55), with adults representing the majority (71.6%). The most affected hospital departments were the neonatal unit (17.12%) and intensive care unit (16.27%). Coagulase-negative staphylococci accounted for the highest proportion (44.11%) of isolates. Among the most commonly identified pathogens were Klebsiella pneumoniae (10.77%), Staphylococcus aureus (8.74%), and Acinetobacter baumannii (5.78%). Klebsiella pneumoniae showed high resistance to third-generation cephalosporins (65.13%), gentamicin (60.52%), ciprofloxacin (77.94%), cotrimoxazole (70.39%), and imipenem (26.97%). A. baumannii exhibited alarmingly high resistance rates: 82.92% to carbapenems, 93.90% to third-generation cephalosporins, 90.24% to ciprofloxacin, and 90.91% to cotrimoxazole, though colistin remained effective. S. aureus showed 65.32% resistance to oxacillin, with no glycopeptide-resistant strains detected. Conclusion: Continuous epidemiological surveillance of bacteremia is critical at the hospital level to inform and optimize empirical antibiotic therapy for this severe condition.

Keywords: Antibiotic resistance; Bacteremia; Blood culture; Bacteria

References


Angele, M. K., Pratschke, S., Hubbard, W. J., & Chaudry, I. H. (2014). Gender differences in sepsis: Cardiovascular and immunological aspects. Virulence, 5(1), 13–19.

Bertrand, X., Costa, Y., & Pina, P. (2005). Surveillance of antimicrobial resistance of bacteria isolated from bloodstream infections: Data from the French National Observatory for Epidemiology of Bacterial Resistance to Antibiotics (ONERBA), 1998–2003. Médecine et Maladies Infectieuses, 35(6), 329–334.

Bonin, M., Chantelat, P., Febvre, C., Mermet, F., Mulin, B., Talon, D., & Tronel, H. (1999). Enterococci: Epidemiological findings in hospitals in eastern France in 1996. Médecine et Maladies Infectieuses, 29(2), 93–98.

Cattoir, V., & Roland, L. (2010). Enterococci resistant to glycopeptides. Médecine/Sciences, 26(11), 936–942.

Clinical and Laboratory Standards Institute. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard (10th ed.). Wayne, PA: CLSI. (CLSI document M07-A10).

Costa, S. P., & Carvalho, C. M. (2022). Burden of bacterial bloodstream infections and recent advances for diagnosis. Pathogens and Disease, 80(1), ftab027.

Desroches, M., Jehl, F., Leclercq, R., Lina, G., Vandenesch, F., Decousser, J. W., & Doucet-Populaire, F. (2013). Antibiotic resistance of methicillin-resistant S. aureus and coagulase-negative staphylococci isolated from osteoarticular infections: A French multicenter prospective study. Médecine et Maladies Infectieuses, 43(4), 52.

Donlan, R. M. (2001). Biofilms and device-associated infections. Emerging Infectious Diseases, 7(2), 277–281.

Dupuis, C., Bouadma, L., Ruckly, S., Perozziello, A., Van-Gysel, D., Mageau, A., & Timsit, J. F. (2020). Sepsis and septic shock in France: Incidences, outcomes and costs of care. Annals of Intensive Care, 10(1), 145.

Ebongue, C. O., Mefo, N. J., Dongho, E. N., Eboumbou Moukoko, E. C., Adiogo, D., & Beyiha, G. (2014). Bacteriological profile and antibiotic susceptibility of blood culture isolates (2006–2011) in Douala, Cameroon. Malian Journal of Infectiology and Microbiology, 2, 27–39.

Fleischmann, C., Scherag, A., Adhikari, N. K. J., Hartog, C. S., Tsaganos, T., Schlattmann, P., & International Forum of Acute Care Trialists. (2016). Assessment of global incidence and mortality of hospital-treated sepsis: Current estimates and limitations. American Journal of Respiratory and Critical Care Medicine, 193(3), 259–272.

Gester, G., Le Maréchal, G. M., Bonadona, A., & Pavese, P. (2023). Epidemiology and risk factors for bacteremia and fungemia after liver transplantation. Médecine et Maladies Infectieuses Formation, 2(2), 31.

Halperin, A. V., Del Castillo Polo, J. A., Cortes-Cuevas, J. L., Cardenas Isasi, M. J., Morisaki, M. A., Birch, R., & Cantón, R. (2022). Impact of automated blood culture systems on the management of bloodstream infections: Results from a crossover diagnostic clinical trial. Microbiology Spectrum, 10(5), e0143622.

Kaufman, D., & Fairchild, K. D. (2004). Clinical microbiology of bacterial and fungal sepsis in very low birth weight infants. Clinical Microbiology Reviews, 17(3), 638–680.

Kayange, N., Kamugisha, E., Mwizamholya, D. L., Jeremiah, S., & Mshana, S. E. (2010). Predictors of positive blood culture and deaths among neonates with suspected neonatal sepsis in a tertiary hospital, Mwanza-Tanzania. BMC Pediatrics, 10, 39.

Krir, A., Dhraief, S., Thabet, L., et al. (2019). Bacteriological profile and antibiotic resistance of bacteria isolated in a burn intensive care unit over seven years. Annals of Burns and Fire Disasters, 32(3), 197–202.

Lebeaux, D., Fernández-Hidalgo, N., Chauhan, A., Lee, S., Ghigo, J. M., Almirante, B., & Beloin, C. (2014). Management of infections related to totally implantable venous-access ports: Challenges and perspectives. The Lancet Infectious Diseases, 14, 146–159.

Lever, A., & Mackenzie, I. (2007). Sepsis: Definition, epidemiology, and diagnosis. BMJ, 335(7625), 879–883.

Lin, Z., & Zhezhe, H. (2022). Prevalence and antibiotic resistance of Klebsiella pneumoniae in a tertiary hospital in Hangzhou, China, 2006–2020. Journal of International Medical Research, 50(2), 03000605221079761.

Marcos, M., Soriano, A., Iñurrieta, A., Martínez, J. A., Romero, A., Cobos, N., & Mensa, J. (2011). Changing epidemiology of central venous catheter-related bloodstream infections: Increasing prevalence of Gram-negative pathogens. Journal of Antimicrobial Chemotherapy, 66(9), 2119–2125.

Mermel, L. A., Allon, M., Bouza, E., Craven, D. E., Flynn, P., O'Grady, N. P., Raad, I., & Warren, D. K. (2009). Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 49(1), 1–45.

Omezzine Letaief, A., Battikh, R., Bahri, F., Hmouda, H., & Jemni, L. (1997). Epidemiological and evolutionary aspects of bacteremia in an internal medicine department: A report of 148 cases. Médecine et Maladies Infectieuses, 27, 778–781.

Shah, B. A., & Padbury, J. F. (2014). Neonatal sepsis: An old problem with new insights. Virulence, 5(1), 170–178.

Subathra Devi, S., Lakshmi Sarayu, Y., & Natarajan, V. (2017). Bacteriological profile and their antibiotic susceptibility pattern in neonatal bacteremia. Journal of Pure and Applied Microbiology, 11(3), 1541–1547.

Timsit, J. F., Ruppé, E., Barbier, F., Tabah, A., & Bassetti, M. (2020). Bloodstream infections in critically ill patients: An expert statement. Intensive Care Medicine, 46(2), 266–284.

Zhanel, G. G., Adam, H. J., Baxter, M. R., Fuller, J., Nichol, K. A., Denisuik, A. J., & Canadian Antimicrobial Resistance Alliance (CARA) and CANWARD. (2019). 42936 pathogens from Canadian hospitals: 10 years of results (2007–2016) from the CANWARD surveillance study. Journal of Antimicrobial Chemotherapy, 74(4), iv5–iv21.

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
30
View
0
Share