Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Bacteriophage Therapy for Staphylococcus aureus Induced Postoperative Acute Endophthalmitis In Vivo

Muhammad Indra Mahardika Iridika Humeri1, Ismi Zuhria2, Rozalina Loebis2*, Wimbo Sasono2, Lukisiari Agustini2, Diah Indriani4, Firman Setiawan5, Annise Proboningrat6, Djoko Legowo6

+ Author Affiliations

Journal of Angiotherapy 8 (10) 1-12 https://doi.org/10.25163/angiotherapy.8109949

Submitted: 10 July 2024 Revised: 03 October 2024  Published: 05 October 2024 


Abstract

Background: Postoperative acute endophthalmitis is a rare but severe complication following cataract surgery, with bacterial pathogens such as Staphylococcus aureus being the leading cause. Despite declining incidence rates globally, visual outcomes remain poor in many cases. Recent studies have explored the potential of bacteriophage therapy to treat bacterial infections, particularly for antimicrobial-resistant strains. This study aimed to assess the therapeutic effectiveness of bacteriophage treatment in a rabbit model of S. aureus-induced acute postoperative endophthalmitis. Methods: The study employed a randomized, controlled, posttest-only design using New Zealand white rabbits. Following extracapsular lens extraction surgery, rabbits were injected with S. aureus intracamerally to induce endophthalmitis. The treatment group received additional bacteriophage therapy. Ocular inflammation was assessed by measuring two biomarkers, myeloperoxidase (MPO) and intercellular adhesion molecule-1 (ICAM-1), using enzyme-linked immunosorbent assay (ELISA) from vitreous fluid samples. Histopathological analysis of retinal and scleral structures was performed post-enucleation. Statistical analyses were conducted using independent t-tests. Results: The treatment group showed significantly lower ICAM-1 levels (p < 0.001), indicating reduced leukocyte infiltration and inflammation compared to the control group. MPO levels were slightly elevated in the treatment group but were not statistically significant (p = 0.261). Histopathological examination revealed that retinal structures in the treatment group were preserved with reduced inflammatory cell infiltration, whereas the control group displayed extensive retinal damage, including neovascularization and retinal detachment. Conclusion: Bacteriophage therapy significantly reduced ocular inflammation and tissue damage in S. aureus-induced endophthalmitis, as evidenced by lower ICAM-1 levels and better-preserved retinal structures in the treatment group. These findings suggest that bacteriophage therapy may be an effective alternative to conventional treatments for postoperative acute endophthalmitis, particularly in cases involving antibiotic-resistant bacteria. Further studies are warranted to explore its broader clinical applicability.

Keywords: Postoperative acute endophthalmitis, Bacteriophage therapy, Staphylococcus aureus, Inflammation markers, Cataract surgery

References


Ahmad, A., & Rehman, M. (2023). Efficacy Of Injecting Intra-Vitreal Moxifloxacin In Acute Post-Operative Endophthalmitis. Journal of Ayub Medical College Abbottabad, 35(1), Article 1. https://doi.org/10.55519/JAMC-01-11011

Ali, M., Pulli, B., Courties, G., Tricot, B., Sebas, M., Iwamoto, Y., Hilgendorf, I., Schob, S., Dong, A., Zheng, W., Skoura, A., Kalgukar, A., Cortés, C., Ruggeri, R. B., Swirski, F. K., Nahrendorf, M., Buckbinder, L., & Chen, J. W. (2016). Myeloperoxidase Inhibition Improves Ventricular Function and Remodeling After Experimental Myocardial Infarction. Jacc Basic to Translational Science. https://doi.org/10.1016/j.jacbts.2016.09.004

Althiabi, S., Aljbreen, A. J., Alshutily, A., & Althwiny, F. A. (2022). Postoperative Endophthalmitis After Cataract Surgery: An Update. Cureus, 14(2). https://doi.org/10.7759/CUREUS.22003

Andrés, C. M. C., Pérez de la Lastra, J. M., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2022). Hypochlorous Acid Chemistry in Mammalian Cells—Influence on Infection and Role in Various Pathologies. International Journal of Molecular Sciences, 23(18), 10735. https://doi.org/10.3390/ijms231810735

Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Archives of Biochemistry and Biophysics, 640, 47–52. https://doi.org/10.1016/j.abb.2018.01.004

Arnhold, J. (2004). Properties, Functions, and Secretion of Human Myeloperoxidase. Biochemistry (Moscow). https://doi.org/10.1023/b:biry.0000016344.59411.ee

Ashander, L. M., Lie, S., Ma, Y., Rochet, E., Washington, J. M., Furtado, J. M., Appukuttan, B., & Smith, J. R. (2019). Neutrophil Activities in Human Ocular Toxoplasmosis: An In Vitro Study With Human Cells. Investigative Ophthalmology & Visual Science, 60(14), 4652–4660. https://doi.org/10.1167/iovs.19-28306

Astley, R., Miller, F. C., Mursalin, M. H., Coburn, P. S., & Callegan, M. C. (2019). An Eye on Staphylococcus aureus Toxins: Roles in Ocular Damage and Inflammation. Toxins, 11(6), 356. https://doi.org/10.3390/toxins11060356

Baba, R., Umazume, K., Koike, N., & Goto, H. (2022). Study of the Correlation Between Severity of Endophthalmitis and Posterior Vitreous Detachment Using a Rabbit Endophthalmitis Model. Investigative Ophthalmology & Visual Science, 63(2), 6. https://doi.org/10.1167/iovs.63.2.6

Bataillie, S., Van Ginderdeuren, R., Van Calster, J., Foets, B., & Delbeke, H. (2020). How a Devastating Case of Acanthamoeba Sclerokeratitis Ended up with Serious Systemic Sequelae. Case Reports in Ophthalmology, 11(2), 348–355. https://doi.org/10.1159/000508326

Becker, M. D., O’Rourke, L. M., Blackman, W. S., Planck, S. R., & Rosenbaum, J. T. (2000). Reduced Leukocyte Migration, but Normal Rolling and Arrest, in Interleukin-8 Receptor Homologue Knockout Mice. Investigative Ophthalmology & Visual Science, 41(7), 1812–1817.

Belchamber, K. B. R., Thein, O. S., Hazeldine, J., Grudzinska, F. S., Faniyi, A. A., Hughes, M. J., Jasper, A. E., Yip, K. P., Crowley, L. E., Lugg, S. T., Sapey, E., Parekh, D., Thickett, D. R., & Scott, A. (2022). Dysregulated Neutrophil Phenotype and Function in Hospitalised Non-ICU COVID-19 Pneumonia. Cells, 11(18), Article 18. https://doi.org/10.3390/cells11182901

Berger, R. B., Blackwell, N. M., Lass, J. H., Diaconu, E., & Pearlman, E. (2002). IL-4 and IL-13 Regulation of ICAM-1 Expression and Eosinophil Recruitment in Onchocerca volvulus Keratitis. Investigative Ophthalmology & Visual Science, 43(9), 2992–2997.

Boyd, A. W., Wawryk, S. O., Burns, G. F., & Fecondo, J. V. (1988). Intercellular adhesion molecule 1 (ICAM-1) has a central role in cell-cell contact-mediated immune mechanisms. Proceedings of the National Academy of Sciences, 85(9), 3095–3099. https://doi.org/10.1073/pnas.85.9.3095

Bui, T. M., Wiesolek, H. L., & Sumagin, R. (2020). ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. Journal of Leukocyte Biology, 108(3), 787–799. https://doi.org/10.1002/JLB.2MR0220-549R

Callegan, M. C., Booth, M. C., Jett, B. D., & Gilmore, M. S. (1999). Pathogenesis of Gram-Positive Bacterial Endophthalmitis. Infection and Immunity, 67(7), 3348–3356. https://doi.org/10.1128/IAI.67.7.3348-3356.1999

Callegan, M. C., Kane, S. T., Cochran, D. C., & Gilmore, M. S. (2002). Molecular Mechanisms of Bacillus Endophthalmitis Pathogenesis. DNA and Cell Biology, 21(5–6), 367–373. https://doi.org/10.1089/10445490260099647

Callegan, M., Gilmore, M., Gregory, M., Ramadan, R., Wiskur, B., Moyer, A., Hunt, J., & Novosad, B. (2007). Bacterial endophthalmitis: Therapeutic challenges and host–pathogen interactions. Progress in Retinal and Eye Research, 26(2), 189–203. https://doi.org/10.1016/j.preteyeres.2006.12.001

Camacho, S. A., Heath, W. R., Carbone, F. R., Sarvetnick, N., LeBon, A., Karlsson, L., Peterson, P. A., & Webb, S. R. (2001). A key role for ICAM-1 in generating effector cells mediating inflammatory responses. Nature Immunology, 2(6), 523–529. https://doi.org/10.1038/88720

Chee, S.-P., Ti, S.-E., Sivakumar, M., & Tan, D. T. H. (1999). Postoperative inflammation: Extracapsular cataract extraction versus phacoemulsification. Journal of Cataract & Refractive Surgery, 25(9), 1280. https://doi.org/10.1016/S0886-3350(99)00161-3

Chen, S., Chen, H., Du, Q., & Shen, J. (2020). Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Frontiers in Physiology, 11. https://www.frontiersin.org/articles/10.3389/fphys.2020.00433

Cheng, D., Talib, J., Stanley, C. P., Rashid, I., Michaëlsson, E., Lindstedt, E.-L., Croft, K. D., Kettle, A. J., Maghzal, G. J., & Stocker, R. (2019). Inhibition of MPO (Myeloperoxidase) Attenuates Endothelial Dysfunction in Mouse Models of Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(7), 1448–1457. https://doi.org/10.1161/ATVBAHA.119.312725

Cho, R.-L., Yang, C.-C., Lee, I.-T., Lin, C.-C., Chi, P.-L., Hsiao, L.-D., & Yang, C.-M. (2016). Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 310(7), L639–L657. https://doi.org/10.1152/ajplung.00109.2014

Choi, J. A., & Chung, S. K. (2011). Postoperative Endophthalmitis following Cataract Surgery in Asia. ISRN Ophthalmology, 2011, 1–5. https://doi.org/10.5402/2011/917265

Coburn, P. S., Miller, F. C., LaGrow, A. L., Parkunan, S. M., Blake Randall, C., Staats, R. L., & Callegan, M. C. (2018). TLR4 modulates inflammatory gene targets in the retina during Bacillus cereus endophthalmitis. BMC Ophthalmology, 18(1), 96. https://doi.org/10.1186/s12886-018-0764-8

Coburn, P. S., Wiskur, B. J., Astley, R. A., & Callegan, M. C. (2015). Blood–Retinal Barrier Compromise and Endogenous Staphylococcus aureus Endophthalmitis. Investigative Ophthalmology & Visual Science, 56(12), 7303–7311. https://doi.org/10.1167/iovs.15-17488

Creuzot-Garcher, C., Benzenine, E., Mariet, A. S., De Lazzer, A., Chiquet, C., Bron, A. M., & Quantin, C. (2016). Incidence of Acute Postoperative Endophthalmitis after Cataract Surgery A Nationwide Study in France from 2005 to 2014. Ophthalmology, 123(7), 1414–1420. https://doi.org/10.1016/J.OPHTHA.2016.02.019

Das, S., Singh, S., & Kumar, A. (2021). Bacterial Burden Declines But Neutrophil Infiltration and Ocular Tissue Damage Persist in Experimental Staphylococcus epidermidis Endophthalmitis. Frontiers in Cellular and Infection Microbiology, 11, 780648. https://doi.org/10.3389/fcimb.2021.780648

Deshmukh, D., Chakrabarti, M., Jayasudha, R., Ali, M. H., Tyagi, M., Sharma, S., & Joseph, J. (2018). Elevated cytokine levels in vitreous as biomarkers of disease severity in infectious endophthalmitis. PLOS ONE, 13(10), e0205292. https://doi.org/10.1371/journal.pone.0205292

Drolsum, L., Davanger, M., & Haaskjold, E. (1994). Risk factors for an inflammatory response after extracapsular cataract extraction and posterior chamber IOL. Acta Ophthalmologica, 72(1), 21–26. https://doi.org/10.1111/j.1755-3768.1994.tb02731.x

Fadlallah, A., Chelala, E., & Legeais, J.-M. (2015). Corneal Infection Therapy with Topical Bacteriophage Administration. The Open Ophthalmology Journal, 9(1), 167. https://doi.org/10.2174/1874364101509010167

Finanda, C., Nurwasis, Sasono, W., & Komaratih, E. (2024). Intravitreal Administration of Corticosteroids and Anti-Vascular Endothelial Growth Factor (Anti-VEGF) Agents to Prevent Proliferative Vitreoretinopathy in Open Globe Injury: A Review. Journal of Medicinal and Chemical Sciences, 7(2), 311–325.

Giese, M. J., Rayner, S. A., Fardin, B., Sumner, H. L., Rozengurt, N., Mondino, B. J., & Gordon, L. K. (2003). Mitigation of Neutrophil Infiltration in a Rat Model of Early  Staphylococcus aureus  Endophthalmitis. Investigative Ophthalmology & Visual Science, 44(7), 3077–3082. https://doi.org/10.1167/iovs.02-1250

Giese, M. J., Shum, D. C., Rayner, S. A., Mondino, B. J., & Berliner, J. A. (2000). Adhesion Molecule Expression in a Rat Model of Staphylococcus aureus Endophthalmitis. Investigative Ophthalmology & Visual Science, 41(1), 145–153.

Giese, M. J., Sumner, H. L., Berliner, J. A., & Mondino, B. J. (1998). Cytokine expression in a rat model of Staphylococcus aureus endophthalmitis. Investigative Ophthalmology & Visual Science, 39(13), 2785–2790.

Gregory, M., Whiston, E., Sugi, N., Sack, C., Kamradt, M. C., Heimer, S., Gilmore, M. S., & Ksander, B. R. (2007). αB-crystallin protects the retina during S. aureus induced endophthalmitis (45.2). The Journal of Immunology, 178(1_Supplement), S57. https://doi.org/10.4049/jimmunol.178.Supp.45.2

Hadar, A., Shani-Shrem, N., & Horowitz, S. (2005). Intercellular adhesion molecule-1 concentration, in utero, decreases after antibiotic treatment. The Journal of Maternal-Fetal & Neonatal Medicine, 17(3), 233–234. https://doi.org/10.1080/14767050500072888

Hall, E. F., Reed, D. M., & Zacks, D. N. (2008). Cytokine Profiles in Experimental Rabbit Models of Treated and Untreated Infectious Endophthalmitis. Investigative Ophthalmology & Visual Science, 49(13), 2480.

Haydinger, C. D., Ashander, L. M., Tan, A. C. R., & Smith, J. R. (2023). Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. Biology, 12(5), 743. https://doi.org/10.3390/biology12050743

Hirano, Y., Sakurai, E., Matsubara, A., & Ogura, Y. (2010). Suppression of ICAM-1 in retinal and choroidal endothelial cells by plasmid small-interfering RNAs in vivo. Investigative Ophthalmology & Visual Science, 51(1), 508–515. https://doi.org/10.1167/iovs.09-3457

Hubbard, A. K., & Rothlein, R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radical Biology and Medicine, 28(9), 1379–1386. https://doi.org/10.1016/S0891-5849(00)00223-9

Jiang, X., Wan, Y., Yuan, H., Zhao, L., Sun, M., Xu, Y., Xin, X., Dong, J., Hu, D., Chen, D., & Li, X. (2022). Incidence, Prophylaxis and Prognosis of Acute Postoperative Endophthalmitis After Cataract Surgery: A Multicenter Retrospective Analysis in Northern China from 2013 to 2019. Infection and Drug Resistance, 15, 4047–4058. https://doi.org/10.2147/IDR.S332997

Kasman, L. M., & Porter, L. D. (2021). Bacteriophages. Brenner’s Encyclopedia of Genetics: Second Edition, 280–283. https://doi.org/10.1016/B978-0-12-374984-0.00131-5

Khanday, D. S., Wani, D. R. M., Ramzan, D. R., & Runyal, D. F. (2015). A comparative study of astigmatism following manual small incision cataract surgery and conventional extracapsular cataract extraction at a tertiary centre in northern india. International Journal of Medical Research and Review, 3(5), 507–513. https://doi.org/10.17511/ijmrr.2015.i5.098

Kishimoto, T., Ishida, W., Fukuda, K., Nakajima, I., Suzuki, T., Uchiyama, J., Matsuzaki, S., Todokoro, D., Daibata, M., & Fukushimaa, A. (2019). Therapeutic effects of intravitreously administered bacteriophage in a mouse model of endophthalmitis caused by vancomycin-sensitive or -resistant enterococcus faecalis. Antimicrobial Agents and Chemotherapy, 63(11). https://doi.org/10.1128/AAC.01088-19/ASSET/D9F4ABF3-B3F8-4690-A11D-4A0A7A0F04F0/ASSETS/GRAPHIC/AAC.01088-19-F0009.JPEG

Kishimoto, T., Ishida, W., Nakajima, I., Ujihara, T., Suzuki, T., Uchiyama, J., Matsuzaki, S., & Fukuda, K. (2022). Intracameral Bacteriophage Injection as Postoperative Prophylaxis for Enterococcus faecalis–Induced Endophthalmitis After Cataract Surgery in Rabbits. Translational Vision Science and Technology, 11(4). https://doi.org/10.1167/tvst.11.4.2

Kishimoto, T., Ishida, W., Nasukawa, T., Ujihara, T., Nakajima, I., Suzuki, T., Uchiyama, J., Todokoro, D., Daibata, M., Fukushima, A., Matsuzaki, S., & Fukuda, K. (2021). In Vitro and In Vivo Evaluation of Three Newly Isolated Bacteriophage Candidates, phiEF7H, phiEF14H1, phiEF19G, for Treatment of Enterococcus faecalis Endophthalmitis. Microorganisms, 9(2), 212. https://doi.org/10.3390/microorganisms9020212

Kumar, A., & Kumar, A. (2015). Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis. PLOS ONE, 10(6), e0128423. https://doi.org/10.1371/journal.pone.0128423

Laurell, C.-G., Zetterström, C., Philipson, B., & Syrén-Nordqvist, S. (1998). Randomized study of the blood-aqueous barrier reaction after phacoemulsification and extracapsular cataract extraction. Acta Ophthalmologica Scandinavica, 76(5), 573–578. https://doi.org/10.1034/j.1600-0420.1998.760512.x

Ledbetter, E. C., Spertus, C. B., & Kurtzman, R. Z. (2018). Incidence and characteristics of acute-onset postoperative bacterial and sterile endophthalmitis in dogs following elective phacoemulsification: 1,447 cases (1995–2015). https://doi.org/10.2460/javma.253.2.201

Lusiak-Szelachowska, M., Miedzybrodzki, R., Drulis-Kawa, Z., Cater, K., Kneževic, P., Winogradow, C., Amaro, K., Jonczyk-Matysiak, E., Weber-Dabrowska, B., Rekas, J., & Górski, A. (2022). Bacteriophages and antibiotic interactions in clinical practice: What we have learned so far. Journal of Biomedical Science, 29(1), 23. https://doi.org/10.1186/s12929-022-00806-1

Majhi, A., Kundu, K., Adhikary, R., Banerjee, M., Mahanti, S., Basu, A., & Bishayi, B. (2014). Combination therapy with ampicillin and azithromycin in an experimental pneumococcal pneumonia is bactericidal and effective in down regulating inflammation in mice. Journal of Inflammation (London, England), 11, 5. https://doi.org/10.1186/1476-9255-11-5

Malle, E., Furtmüller, P. G., Sattler, W., & Obinger, C. (2007). Myeloperoxidase: A Target for New Drug Development? British Journal of Pharmacology. https://doi.org/10.1038/sj.bjp.0707358

Mao, L. K., Flynn, H. W., Miller, D., & Pflugfelder, S. C. (1993). Endophthalmitis caused by Staphylococcus aureus. American Journal of Ophthalmology, 116(5), 584–589. https://doi.org/10.1016/s0002-9394(14)73200-3

Marcinkiewicz, J., & Kontny, E. (2012). Taurine and Inflammatory Diseases. Amino Acids. https://doi.org/10.1007/s00726-012-1361-4

Marquis, J.-F., LaCourse, R., Ryan, L., North, R. J., & Gros, P. (2009). Genetic and Functional Characterization of the Mouse Trl3 Locus in Defense against Tuberculosis. The Journal of Immunology, 182(6), 3757–3767. https://doi.org/10.4049/jimmunol.0802094

Meylani, N. R., Prawirakoesoema, L., & Ratnaningsih, N. (2011). Incidence Of Endophthalmitis Post Cataract Surgery in Central Operating Theater Indonesia National Eye Center, Cicendo Eye Hospital Bandung, Indonesia. Department of Ophthalmology, Padjajaran University, Cicendo Eye Hospital.

Miller, F. C., Coburn, P. S., Huzzatul, M. M., LaGrow, A. L., Livingston, E., & Callegan, M. C. (2019). Targets of immunomodulation in bacterial endophthalmitis. Progress in Retinal and Eye Research, 73, 100763. https://doi.org/10.1016/j.preteyeres.2019.05.004

Mursalin, M. H., Coburn, P. S., Livingston, E., Miller, F. C., Astley, R., Fouet, A., & Callegan, M. C. (2019). S-layer Impacts the Virulence of Bacillus in Endophthalmitis. Investigative Ophthalmology & Visual Science, 60(12), 3727–3739. https://doi.org/10.1167/iovs.19-27453

Nicholls, S. J., & Hazen, S. L. (2005). Myeloperoxidase and Cardiovascular Disease. Arteriosclerosis Thrombosis and Vascular Biology. https://doi.org/10.1161/01.atv.0000163262.83456.6d

Norling, L. V., Leoni, G., Cooper, D., & Perretti, M. (2010). Cell Adhesion Molecules. In C. N. Serhan, P. A. Ward, & D. W. Gilroy (Eds.), Fundamentals of Inflammation (1st ed., pp. 208–216). Cambridge University Press. https://doi.org/10.1017/CBO9781139195737.018

Novosad, B. D., Astley, R. A., & Callegan, M. C. (2011). Role of Toll-Like Receptor (TLR) 2 in Experimental Bacillus cereus Endophthalmitis. PLOS ONE, 6(12), e28619. https://doi.org/10.1371/journal.pone.0028619

O’Callaghan, R. J. (2018). The Pathogenesis of Staphylococcus aureus Eye Infections. Pathogens, 7(1), 9. https://doi.org/10.3390/pathogens7010009

Omuta, J., Uchida, K., Yamaguchi, H., & Shibuya, K. (2007). Histopathological Study on Experimental Endophthalmitis Induced by Bloodstream Infection with Candida albicans. Japanese Journal of Infectious Diseases, 60(1), 33–39. https://doi.org/10.7883/yoken.JJID.2007.33

Pathengay, A., Khera, M., Das, T., Sharma, S., Miller, D., & Flynn, H. W. (2012). Acute Postoperative Endophthalmitis Following Cataract Surgery. Asia-Pacific Journal of Ophthalmology, 1(1), 35–42. https://doi.org/10.1097/APO.0B013E31823E574B

Peiris, A., Wickramasinghe, S., Costa, Y., & Kottahachchi, D. (2023). Proposing an Accurate Quantification Method for Myeloperoxidase Staining on Peripheral Blood Smears with Varying Hemoglobin and Absolute Neutrophil Counts. International Journal of Research Publications, 120(1). https://doi.org/10.47119/IJRP1001201320234489

Peter, A. E., Sandeep, B. V., Rao, B. G., & Kalpana, V. L. (2021). Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Frontiers in Pharmacology, 11, 583777. https://doi.org/10.3389/fphar.2020.583777

Pflugfelder, S. C., Stern, M., Zhang, S., & Shojaei, A. (2017). LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease. Journal of Ocular Pharmacology and Therapeutics, 33(1), 5–12. https://doi.org/10.1089/jop.2016.0105

Pina, M., Salinas, A., Arellano, L., Sompalli, S., Trevino, V., Castillo, E., Lopez, M., & Pena, A. (2022). Bacteriophage Therapy: An Alternative Solution for Antibiotics. DHR Proceedings. https://doi.org/10.47488/dhrp.v2iS2.58

Plumet, L., Ahmad-Mansour, N., Dunyach-Remy, C., Kissa, K., Sotto, A., Lavigne, J.-P., Costechareyre, D., & Molle, V. (2022). Bacteriophage Therapy for Staphylococcus Aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Frontiers in Cellular and Infection Microbiology, 12, 907314. https://doi.org/10.3389/fcimb.2022.907314

Putra, A. (2019). Basic Molecular Stem Cell (1st ed.). Unissula Press.

Ramadhan, A., Agustini, L., Hermawan, D., Zuhria, I., Prastyani, R., Notobroto, H. B., & Legowo, D. (2024). Effect of Platelet Rich Fibrin Membrane (PRF) or Conjunctival Autograft on VEGF Expression and Microvascular Density Post Conjunctival Excision. Journal of Medicinal and Chemical Sciences, 7(2), 374–382.

Rapuano, C. J., Stout, J. T., & McCannel, C. A. (2022). Acute-onset post operative endophthalmitis. In AAO BCSC 2021-2022 Section 12: Retina & Vitreous (Vol. 12, pp. 388–389).

Rarey, K. A., Shanks, R. M. Q., Romanowski, E. G., Mah, F. S., & Kowalski, R. P. (2012). Staphylococcus aureus Isolated from Endophthalmitis Are Hospital-Acquired Based on Panton-Valentine Leukocidin and Antibiotic Susceptibility Testing. Journal of Ocular Pharmacology and Therapeutics, 28(1), 12–16. https://doi.org/10.1089/jop.2011.0107

Reddy, P., Congdon, N., MacKenzie, G., & al.,  et. (2018). Effect of providing near glasses on productivity among rural Indian tea workers with presbyopia (PROSPER): A randomised trial. Lancet Glob Health, 6, e1019–e1027.

Roach, D. R., & Donovan, D. M. (2015). Antimicrobial bacteriophage-derived proteins and therapeutic applications. Bacteriophage, 5(3), e1062590. https://doi.org/10.1080/21597081.2015.1062590

Sanders, M. E., Taylor, S., Tullos, N., Norcross, E. W., Moore, Q. C., Thompson, H., King, L. B., & Marquart, M. E. (2013). Passive immunization with Pneumovax®23 and pneumolysin in combination with vancomycin for pneumococcal endophthalmitis. BMC Ophthalmology, 13(1), 8. https://doi.org/10.1186/1471-2415-13-8

Schindhelm, R. K., van Zwan, L. P., Teerlink, T., & Scheffer, P. (2009). Myeloperoxidase: A Useful Biomarker for Cardiovascular Disease Risk Stratification? Clinical Chemistry. https://doi.org/10.1373/clinchem.2009.126029

Sen, S., Mishra, C., Rameshkumar, G., Babu Kannan, N., Shekhar, M., & Lalitha, P. (2023). Microbiological Profile of Post-cataract Surgery Endophthalmitis with Usage of Prophylactic Intracameral Moxifloxacin. Ocular Immunology and Inflammation, 0(0), 1–7. https://doi.org/10.1080/09273948.2023.2170249

Siahaan, N. C., & Iskandar, E. (2015). Karakteristik Klinis Pasien Endoftlamitis Pasca Bedah Katarak di Pusat Mata Nasional Rumah Sakit Mata Cicendo tahun 2012-2014.

Simakurthy, S., & Tripathy, K. (2022). Endophthalmitis. In Treasure Island (FL): StatPearls Publishing. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK559079/

Singh, P. K., Donovan, D. M., & Kumar, A. (2014). Intravitreal Injection of the Chimeric Phage Endolysin Ply187 Protects Mice from Staphylococcus aureus Endophthalmitis. Antimicrobial Agents and Chemotherapy, 58(8), 4621–4629. https://doi.org/10.1128/AAC.00126-14

Smith, W. M., Armbrust, K. R., Dahr, S. S., Dodds, E. M., Gangaputra, S., Knickelbein, J. E., Leveque, T. K., & Shantha. (2023). Basic Concepts in Immunology: Effector Cells and the Innate Immune Response. In AAO BCSC?: Uveitis and Ocular Inflammation (2023rd–2024th eds.). https://www.aao.org/education/bcscsnippetdetail.aspx?id=2fdaffe7-8baa-47c2-8ea2-1b69508d51e9

Sotnikova, L. F., Goncharova, A. V., & Pimenov, N. V. (2021). Use of bacteriophage cocktails for ulcerative keratitis in horses, clinical and ophthalmological justification. IOP Conference Series: Earth and Environmental Science, 677(2), 022017. https://doi.org/10.1088/1755-1315/677/2/022017

Soubhye, J., Van Antwerpen, P., & Dufrasne, F. (2020). A patent review of myeloperoxidase inhibitors for treating chronic inflammatory syndromes (focus on cardiovascular diseases, 2013-2019). Expert Opinion on Therapeutic Patents, 30(8), 595–608. https://doi.org/10.1080/13543776.2020.1780210

Sri Agustin, F., Sofia, O., & Metita, M. (2020). Aspek Klinis Pasien Endoftalmitis Akut Post Operatif Katarak di RSUD Dr. Saiful Anwar Malang. Ophtamol Ina, 46(2), 124–130.

Subbiah, S., McAvoy, C. E., & Best, J. L. (2010). Retinal vasculitis as an early sign of bacterial post-operative endophthalmitis. Eye, 24(8), 1410–1411. https://doi.org/10.1038/eye.2010.18

Sun, J., Guo, Z., Li, H., Yang, B., & Wu, X. (2021). Acute Infectious Endophthalmitis After Cataract Surgery: Epidemiological Characteristics, Risk Factors and Incidence Trends, 2008–2019. Infection and Drug Resistance, 14, 1231. https://doi.org/10.2147/IDR.S304675

Sybesma, W., Zbinden, R., Chanishvili, N., Kutateladze, M., Chkhotua, A., Ujmajuridze, A., Mehnert, U., & Kessler, T. M. (2016). Bacteriophages as Potential Treatment for Urinary Tract Infections. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.00465

Taylor, T. A., & Unakal, C. G. (2022). Staphylococcus Aureus. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK441868/

Universade, P. A., Komaratih, E., & W, C. D. K. (2023). Comparing phacoemulsification and phacotrabeculectomy for managing primary angle-closure glaucoma with cataracts: A review. Bali Medical Journal, 12(3), Article 3. https://doi.org/10.15562/bmj.v12i3.4835

Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5(1), 226–235. https://doi.org/10.4161/viru.25991

Yao, K., Zhu, Y., Zhu, Z., Wu, J., Liu, Y., Lu, Y., Hao, Y., Bao, Y., Ye, J., Huang, Y., Li, Z., Shentu, X., & Yu, Y. (2013). The incidence of postoperative endophthalmitis after cataract surgery in China: A multicenter investigation of 2006–2011. British Journal of Ophthalmology, 97(10), 1312–1317. https://doi.org/10.1136/BJOPHTHALMOL-2013-303282

Zhang, F., & Cheng, W. (2022). The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Antibiotics, 11(9), Article 9. https://doi.org/10.3390/antibiotics11091215

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
205
View

Share