References
Ahmad, N. (2022). In vitro and in vivo characterization methods for evaluation of modern wound dressings. Pharmaceutics, 15(1), 42.
Alamer, L., Alqahtani, I. M., & Shadadi, E. (2023). Intelligent health risk and disease prediction using optimized naive Bayes classifier. Journal of Internet Services and Information Security, 13(1), 01-10.
Barakat-Johnson, M., Jones, A., Burger, M., Leong, T., Frotjold, A., Randall, S., ... & Coyer, F. (2022). Reshaping wound care: Evaluation of an artificial intelligence app to improve wound assessment and management amid the COVID-19 pandemic. International Wound Journal, 19(6), 1561-1577.
Chemello, G., Salvatori, B., Morettini, M., & Tura, A. (2022). Artificial intelligence methodologies applied to technologies for screening, diagnosis, and care of the diabetic foot: A narrative review. Biosensors, 12(11), 985.
Chino, D. Y., Scabora, L. C., Cazzolato, M. T., Jorge, A. E., Traina-Jr, C., & Traina, A. J. (2020). Segmenting skin ulcers and measuring the wound area using deep convolutional networks. Computer Methods and Programs in Biomedicine, 191, 105376.
Dhar, M. K., Wang, C., Patel, Y., Zhang, T., Niezgoda, J., Gopalakrishnan, S., ... & Yu, Z. (2024). Wound tissue segmentation in diabetic foot ulcer images using deep learning: A pilot study. arXiv preprint arXiv:2406.16012.
Dhar, M. K., Zhang, T., Patel, Y., Gopalakrishnan, S., & Yu, Z. (2024). FUSegNet: A deep convolutional neural network for foot ulcer segmentation. Biomedical Signal Processing and Control, 92, 106057.
Du, G., Cao, X., Liang, J., Chen, X., & Zhan, Y. (2020). Medical image segmentation based on U-Net: A review. Journal of Imaging Science & Technology, 64(2).
Eriksson, E., Liu, P. Y., Schultz, G. S., Martins-Green, M. M., Tanaka, R., Weir, D., ... & Gurtner, G. C. (2022). Chronic wounds: Treatment consensus. Wound Repair and Regeneration, 30(2), 156-171.
Fauzi, M. F. A., Khansa, I., Catignani, K., Gordillo, G., Sen, C. K., & Gurcan, M. N. (2021). Segmentation and management of chronic wound images: A computer-based approach. Chronic Wounds, Wound Dressings and Wound Healing, 115-134.
Monroy, B., Sanchez, K., Arguello, P., Estupiñán, J., Bacca, J., Correa, C. V., ... & Rojas-Morales, F. (2023). Automated chronic wounds medical assessment and tracking framework based on deep learning. Computers in Biology and Medicine, 165, 107335.
Thota, C., Jackson Samuel, D., Musa Jaber, M., Kamruzzaman, M. M., Ravi, R. V., Gnanasigamani, L. J., & Premalatha, R. (2024). Image smart segmentation analysis against diabetic foot ulcer using Internet of Things with virtual sensing. Big Data, 12(2), 155-172.
Wang, X., Yuan, C. X., Xu, B., & Yu, Z. (2022). Diabetic foot ulcers: Classification, risk factors, and management. World Journal of Diabetes, 13(12), 1049.