References
Abd El-Ghany, S., Elmogy, M., & Abd El-Aziz, A. A. (2023). Computer-aided diagnosis system for blood diseases using EfficientNet-B3 based on a dynamic learning algorithm. Diagnostics, 13(3), 404.
Abed, H. I. A. (2022). Proposing efficient CNN models for the detection of lymphoblastic leukemia (ALL) using transfer learning. [PhD dissertation, XYZ University].
Abir, W. H., Uddin, M. F., Khanam, F. R., Tazin, T., Khan, M. M., Masud, M., & Aljahdali, S. (2022). Explainable AI in diagnosing and anticipating leukemia using transfer learning method. Computational Intelligence and Neuroscience, 2022, 1-10.
Ahmed, M. J., & Nayak, P. (2021). Detection of lymphoblastic leukemia using VGG19 model. In 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 716-723). IEEE.
Anilkumar, K. K., Manoj, V. J., & Sagi, T. M. (2022). Automated detection of B cell and T cell acute lymphoblastic leukemia using deep learning. IRBM, 43(5), 405-413.
Batool, A., & Byun, Y.-C. (2023). Lightweight EfficientNetB3 model based on depthwise separable convolutions for enhancing classification of leukemia white blood cell images. IEEE Access, 2023, 1-10.
Boldú, L., Merino, A., Acevedo, A., Molina, A., & Rodellar, J. (2021). A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Computer Methods and Programs in Biomedicine, 202, 105999.
Das, P. K., & Meher, S. (2021). An efficient deep convolutional neural network based detection and classification of acute lymphoblastic leukemia. Expert Systems with Applications, 183, 115311.
Gupta, A., & Gupta, R. (2019). ALL challenge dataset of ISBI 2019 [Data set]. The Cancer Imaging Archive. https://doi.org/10.7937/tcia.2019.dc64i46r.
Hayat, U., Yasir, M., & Rehman, A. U. (2022). Transfer learning for the medical diagnosis of acute leukemia cancer. Journal of Healthcare Engineering, 2022, 1-10.
Inaba, H., & Pui, C.-H. (2021). Advances in the diagnosis and treatment of pediatric acute lymphoblastic leukemia. Journal of Clinical Medicine, 10(9), 1926.
Jha, K. K., & Dutta, H. S. (2019). Mutual information based hybrid model and deep learning for acute lymphocytic leukemia detection in single cell blood smear images. Computer Methods and Programs in Biomedicine, 179, 104987.
Jiang, Z., Dong, Z., Wang, L., & Jiang, W. (2021). Method for diagnosis of acute lymphoblastic leukemia based on ViT-CNN ensemble model. Computational Intelligence and Neuroscience, 2021, 1-10.
Khandekar, R., Shastry, P., Jaishankar, S., Faust, O., & Sampathila, N. (2021). Automated blast cell detection for acute lymphoblastic leukemia diagnosis. Biomedical Signal Processing and Control, 68, 102690.
Kruse, A., Abdel-Azim, N., Kim, H. N., Ruan, Y., Phan, V., Ogana, H., Wang, W., et al. (2020). Minimal residual disease detection in acute lymphoblastic leukemia. International Journal of Molecular Sciences, 21(3), 1054.
Maaliw, R. R., Alon, A. S., Lagman, A. C., Garcia, M. B., Susa, J. A. B., Reyes, R. C., Fernando-Raguro, M. C., & Hernandez, A. A. (2022). A multistage transfer learning approach for acute lymphoblastic leukemia classification. In 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0488-0495). IEEE.
Nasir, M. U., Khan, M. F., Khan, M. A., Zubair, M., Abbas, S., Alharbi, M., & Akhtaruzzaman, M. (2023). Hematologic cancer detection using white blood cancerous cells empowered with transfer learning and image processing. Journal of Healthcare Engineering, 2023, 1-10.
Ramaneswaran, S., Srinivasan, K., Vincent, P. M. D. R., & Chang, C.-Y. (2021). Hybrid inception v3 XGBoost model for acute lymphoblastic leukemia classification. Computational and Mathematical Methods in Medicine, 2021, 1-10.
Saeed, A., Shoukat, S., Shehzad, K., Ahmad, I., Eshmawi, A., Amin, A. H., & Tag-Eldin, E. (2022). A deep learning-based approach for the diagnosis of acute lymphoblastic leukemia. Electronics, 11(19), 3168.
Safuan, S. N. M., Tomari, M. R. M., Zakaria, W. N. W., Othman, N., & Suriani, N. S. (2020). Computer-aided system (CAS) of lymphoblast classification for acute lymphoblastic leukemia (ALL) detection using various pre-trained models. In 2020 IEEE Student Conference on Research and Development (SCOReD) (pp. 411-415). IEEE.
Sriram, G., Babu, T. R., Praveena, R., & Anand, J. V. (2022). Classification of leukemia and leukemoid using VGG-16 convolutional neural network architecture. Molecular & Cellular Biomechanics, 19(2), 1-10.