References
Acharya, U. R., Dua, S., Du, X., & Chua, C. K. (2011). Automated diagnosis of glaucoma using texture and higher order spectra features. IEEE Transactions on Information Technology in Biomedicine, 15, 449–455.
Adeyemo, A., Wimmer, H., & Powell, L. M. (2019). Effects of normalization techniques on logistic regression in data science. Journal of Information Systems Applied Research, 12, 37-44.
Ali, L., Niamat, A., Khan, J. A., Golilarz, N. A., Xingzhong, X., Noor, A., Nour, R., & Bukhari, S. A. C. (2019). An optimized stacked support vector machines based expert system for the effective prediction of heart failure. IEEE Access, 7, 54007-54014.
Ali, L., Zhu, C., Zhang, Z., & Liu, Y. (2019). Automated detection of heart disease based using linear discriminant analysis and genetically optimized neural network. IEEE Journal of Translational Engineering in Health and Medicine, 7, Article 2000410.
Alizadehsani, R., Zangooei, M. H., Hosseini, M. J., Habibi, J., Khosravi, A., Roshanzamir, M., Khozeimeh, F., Sarrafzadegan, N., & Nahavandi, S. (2016). Coronary artery disease detection using computational intelligence methods. Knowledge-Based Systems, 109, 187-197.
Barman, R. K., Mukhopadhyay, A., Maulik, U., & Das, S. (2019). Identification of infectious disease-associated host genes using machine learning techniques. BMC Bioinformatics, 20(1), 1-12.
Chen, X., Huang, Q., Wang, Y., et al. (2020). A deep learning approach to identify association of disease-gene using information of disease symptoms and protein sequences. Analytical Methods, 12(15), 2016-2026.
Das, R., Turkoglu, I., & Sengur, A. (2009). Effective diagnosis of heart disease through neural networks ensembles. Expert Systems with Applications, 36(4), 7675-7680.
Jin, B., Che, C., Liu, Z., Zhang, S., Yin, X., & Wei, X. (2018). Predicting the risk of heart failure with EHR sequential data modeling. IEEE Access, 6, 9256-9261.
Kim, J. K., & Kang, S. (2017). Neural network-based coronary heart disease risk prediction using feature correlation analysis. Journal of Healthcare Engineering, 2017, 1-13.
Le, D. H. (2020). Machine learning-based approaches for disease gene prediction. Briefings in Functional Genomics, 19(5-6), 350-363.
Le, D.-H., & Dang, V.-T. (2016). Ontology-based disease similarity network for disease gene prediction. Vietnam Journal of Computer Science, 3(3), 197-205.
Li, Y., Kuwahara, H., Yang, P., Song, L., & Gao, X. (2019). PGCN: Disease gene prioritization by disease and gene embedding through graph convolution neural networks. bioRxiv. https://www.biorxiv.org/content/10.1101/532226v1/
Lu, P., Guo, S., Zhang, H., Li, Q., Wang, Y., Wang, Y., & Qi, L. (2018). Research on improved depth belief network-based prediction of cardiovascular diseases. Journal of Healthcare Engineering, 2018, 1-9.
Luo, P., Li, Y., Tian, L. P., & Wu, F. X. (2019). Enhancing the prediction of disease-gene associations with multimodal deep learning. Bioinformatics, 35(19), 3735-3742.
Manogaran, G., Varatharajan, R., & Priyan, M. K. (2018). Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia Tools and Applications, 77(4), 4379-4399.
Popov, P., Bizin, I., Gromiha, M., Kulandaisamy, A., & Frishman, D. (2019). Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure. PLoS One, 14(7), 1-13.
Tran, A., Walsh, C. J., Batt, J., dos Santos, C. C., & Hu, P. (2020). A machine learning-based clinical tool for diagnosing myopathy using multi-cohort microarray expression profiles. Journal of Translational Medicine, 18(1), 1-9.
Zahoor, J., & Zafar, K. (2020). Classification of microarray gene expression data using an infiltration tactics optimization (Ito) algorithm. Genes, 11(7), 1-28.
Zeng, X., Ding, N., Rodríguez-Patón, A., & Zou, Q. (2017). Probability-based collaborative filtering model for predicting gene disease associations. BMC Medical Genomics, 10(Supplement 5), 76.