Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

Study of Antibiotic Resistance in ESKAPE Bacteria Using β-lactamase and ESBL Genes

Hiba Ahmed Jawade 1*, Zahraa Yosif Motaweq 2, Hawraa Dheyaa Rasool 3,  Fatima Hassan Hussain 1

+ Author Affiliations

Journal of Angiotherapy 8 (3) 1-10 https://doi.org/10.25163/angiotherapy.839618

Submitted: 16 January 2024 Revised: 13 March 2024  Published: 20 March 2024 


Abstract

Background: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, collectively known as ESKAPE bacteria, pose a significant threat in healthcare settings due to their increasing antibiotic resistance. Understanding the mechanisms underlying their resistance is crucial for developing effective therapeutic strategies. Methods: This study aimed to investigate the phenotypic and genotypic properties of β-lactamase enzymes in ESKAPE bacteria isolated from ulcer infections. Clinical specimens were collected from patients with various ulcer diseases, and bacterial isolates were identified using standard bacteriological methods and the Vitek-2 automated system. DNA extraction, polymerase chain reaction (PCR), and antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method were performed. The presence of specific β-lactamase genes (blaKPC, blaTEM, blaCTX-M, and blaAMPC) was examined through molecular techniques. Results: Among the 104 clinical specimens collected, 88% yielded positive cultures, with Gram-negative bacteria predominating. Antibiotic susceptibility testing revealed high resistance rates, particularly to β-lactam antibiotics, among ESKAPE isolates. Molecular analysis identified the presence of extended-spectrum β-lactamases (ESBLs) in all isolates, with blaKPC and blaTEM being the most prevalent β-lactamase genes. Notably, blaKPC was detected in 72% of E. cloacae, 13.3% of S. aureus, 33.33% of Klebsiella pneumoniae, 50% of Pseudomonas aeruginosa, 0% of E. faecium, and 100% of A. baumannii isolates. Similarly, blaCTX-M and blaAMPC genes showed distinct distribution patterns across the different species. Conclusion: The study highlights the widespread presence of ESBL-producing ESKAPE bacteria in ulcer infections and underscores the importance of molecular techniques for accurate detection of β-lactamase production.

Keywords: ESKAPE bacteria, Antibiotic resistance mechanisms, β-lactamases, ESBL genes (blaKPC, blaTEM, blaCTX-M, blaAMPC), Molecular identification

References


Al-Muhannak, F.H. (2010). Spread of Some Extended-Spectrum BetaLactamases in Clinical Isolates of Gram-Negative Bacilli in Najaf. M.Sc.Thesis. College of Medicine. University of Kufa.

Aslam B, Rasool M, Muzammil S, Siddique AB, Nawaz Z, Shafique M, et al. (2020). Carbapenem resistance:Mechanisms and drivers of global menace. Pathog Bact.

Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004; 305(5690):1622-1625.

Barlow, M., Reik, R. A., Jacobs, S. D., Medina, M., Meyer, M. P., McGowan, J. E., Jr & Tenover, F. C. (2008). High rate of mobilization for blaCTX-Ms. Emerg Infect Dis 14, 423–428.

Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two component regulatory systems and antibiotic resistance in Gram-negative pathogens. Intl J Mol Sci. 2019; 20(7):p1781. Doi: 10.3390/ijms20071781.

Bush, K. (2010). "Alarming β-lactamase-mediated resistance in multidrug- resistant Enterobacteriaceae." Current opinion in microbiology 13(5): 558- 564.

CLSI. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. M100-30th ed. CLSI, Wayne, PA, USA, 2023.

David LP, Robert AB. (2005). Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev; 18: 6576

De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020; 33(3):e00181-19.

Elvira GG, Sandra IMI, Jorge MLD, Gloria M G. (2011). “Molecular characterization and antimicrobial susceptibility of extended-spectrum beta- lactamase producing Enterobacteriaceae isolates at a tertiary-care center in Monterrey, Mexico”. J Med Microbiol; 60: 84-90.

Groenewold MR, Sarmiento RF, Vanoli K, Raudabaugh W, Nowlin S, Gomaa A. Workplace violence injury in 106 US hospitals participating in the Occupational Health Safety Network (OHSN), 2012-2015. American Journal of Industrial Medicine. 2018; 61(2):157-166.

Hammond, D.S. (2004). SHV B-lactamase: DNA diagnostic and evolution. School of life science. M.Sc. Thesis. Queensland University of Technology.

Harwood CA, Surentheran T, McGregor JM, Spink PJ, Leigh IM, Breuer J, et al. Human papillomavirus infection and non-melanoma skin cancer in immunosuppressed and immunocompetent individuals. Journal of Medical Virology. 2000; 61(3):289-297.

Hayati Z, Desfiana UH, Suhartono S. Distribution of multidrug-resistant Enterococcus faecalis and Enterococcus faecium isolated from clinical specimens in the Zainoel Abidin General Hospital, Banda Aceh, Indonesia. Biodiversitas. 2022; 23:5043-5049. Doi: 10.13057/biodiv/d231010.

Jacoby, G.A.(2009). AmpC β-lactamases. Clinical microbiology reviews, 22(1), 161-182.

Jain SK, Barman R. Bacteriological profile of diabetic foot ulcer with special reference to drug-resistant strains in a tertiary care center in North-East India. Indian Journal of Endocrinology and Metabolism. 2017; 21(5):p688.

Juhás P, Farrow CL, Yang X, Knox KR, Billinge SJ. Complex modeling: A strategy and software program for combining multiple information sources to solve ill posed structure and nanostructure inverse problems. Acta Crystallographica Section A. 2015; 71(6):562-568.

Khan, M. A. ; Thurgood, N. E. ; Faheem, S. M. ; Rais, N. ; Ansari, M. Z. ; Sultan, M. and Shams, T. K. (2020). Occurrence of Extended Spectrum Beta-Lactamase Gram-Negative Bacteria from Non-Clinical Sources in Dubai, United Arab Emirates. Water, 12:2562.

Logan LK, Weinstein RA. (2017). The Epidemiology of Carbapenem- Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis.; 215(suppl_1):S28–S36.

Machado E,  Cantón R,  Baquero F, et al. Integron content of extended-spectrum-β-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain, Antimicrob Agents Chemother, 2005, vol. 49 (pg. 1823-9).

Manchanda, V., and N. P. Singh. 2003. Occurrence and detection of AmpC β-lactamases among gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J. Antimicrob. Chemother.51:415-418.

Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006; 127(2):291-304.

Muzaheed, Doi Y, Adams-Haduch, J.M., Shivannavar, C.T., Paterson, D.L. and Gaddad, S.M. (2009) Faecal carriage of CTX-M-15 producing Klebsiella pneumoniae in patients with acute gastroenteritis. Indian J. Med. Res., 129(5): 599-602.

Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-Lactamase Database (BLDB)- structure and function. J Enzyme Inhib Med Chem. 2017; 32(1):917-919. Doi: 10.1080/14756366.2017.1344235.

Nordmann P, Naas T, Poirel L. (2011). Global spread of carbapenemase- producing Enterobacteriaceae.Emerg Infect Dis. 17(10):1791.

Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β- lactamases: a clinical update. Clinical microbiology reviews, 18(4), 657-686.

Peterson LE. K-nearest neighbor. Scholarpedia. 2009; 4(2):p1883. Doi: 10.4249/scholarpedia.1883.

Piddock LJ. Multidrug-resistance efflux pumps? Not just for resistance. Nature Reviews Microbiology. 2006; 4(8):629-636.

Ranjbar R, Izadi M, Hafshejani TT, Khamesipour F. (2016). Molecular detection and antimicrobial resistance of Klebsiella pneumoniae from house flies (Musca domestica) in kitchens, farms, hospitals and slaughter houses. J Infect Public Health. 9(4):499–505.

Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, et al. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiology and Molecular Biology Reviews. 2018; 82(2):e00068-17.

Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011; 332(6032):974-977.

Rudresh SM, Nagarathnamma T. Extended spectrum β-lactamase producing Enterobacteriaceae and antibiotic co- resistance. Indian J Med Res. 2011;133:116–8.

Schmid, A., Hörmansdorfer, S., Messelhäusser, U.,Käsbohrer, A., Sauter- Louis, C. and Mansfeld, R. (2013) Prevalence of extended-spectrum β- lactamase-producing Escherichia coli on Bavarian dairy and beef c.

Shah, R. K., Ni, Z. H., Sun, X. Y., Wang, G. Q., and Li, F. (2017). The determination and correlation of various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated classical Klebsiella pneumoniae and hypervirulent Klebsiella pneumoniae from respiratory tract infected patients. Polish journal of microbiology, 66(4): 501-508

Tehrani KH, Martin NI. β-lactam/β-lactamase inhibitor combinations: An update. Medchemcomm. 2018; 9(9):1439-1456. Doi: 10.1039/c8md00342d.

Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. Journal of Clinical Microbiology. 2010; 48(4):1019-1025.

Walsh TR (2010). Emerging carbapenemases: a global perspective. Int J Antimicrob Agents. 36:S8–S14.

Walther-Rasmussen, J. and Hoiby N. (2004). Class A carbapenemases. J. Antimicrob. Chemother., 60:470-482.

Yang, H. F., Cheng, J., Hu, L. F., Ye, Y., & Li, J. B. (2012). Plasmid- mediated quinolone resistance in extended-spectrum-β-lactamase-and AmpC.

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
578
View

Share