References
Alshammari, M.M., Almuhanna, A., Alhiyafi, J. (2021). Mammography image-based diagnosis of breast cancer using machine learning: a pilot study. Sens. 22(1), 203.
https://doi.org/10.3390/s22010203
Cain, E.H., Saha, A., Harowicz, M.R., Marks, J.R., Marcom, P.K., Mazurowski, M.A. (2019). Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Breast Cancer Res. Treat. 173, 455-463.
https://doi.org/10.1007/s10549-018-4990-9
Chen, R., Wu, W., Qi, H., Wang, J., Wang, H. (2019). A stacked autoencoder neural network algorithm for breast cancer diagnosis with magnetic detection electrical impedance tomography. IEEE Access. 8, 5428-5437.
https://doi.org/10.1109/ACCESS.2019.2961810
Dalal, S., Onyema, E. M., Kumar, P., Maryann, D. C., Roselyn, A. O., & Obichili, M. I. (2022). A hybrid machine learning model for timely prediction of breast cancer. International Journal of Modeling, Simulation, and Scientific Computing, 2341023.
https://doi.org/10.1142/S1793962323410234
Dewangan, K. K., Dewangan, D. K., Sahu, S. P., & Janghel, R. (2022). Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimedia Tools and Applications, 81(10), 13935-13960.
https://doi.org/10.1007/s11042-022-12385-2
Dewangan, K.K., Dewangan, D.K., Sahu, S.P., Janghel, R. (2022). Breast cancer diagnosis in an early stage using novel deep learning with hybrid optimization technique. Multimed. Tools Appl. 81(10), 13935-13960.
https://doi.org/10.1007/s11042-022-12385-2
Eftekharian, M., Nodehi, A., Enayatifar, R. (2023). ML-DSTnet: A Novel Hybrid Model for Breast Cancer Diagnosis Improvement Based on Image Processing Using Machine Learning and Dempster-Shafer Theory. Comput. Intell. Neurosci. 2023.
https://doi.org/10.1155/2023/7510419
Houssein, E. H., Emam, M. M., Ali, A. A., & Suganthan, P. N. (2021). Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review. Expert Systems with Applications, 167, 114161.
https://doi.org/10.1016/j.eswa.2020.114161
Jebarani, P.E., Umadevi, N., Dang, H., Pomplun, M. (2021). A novel hybrid K-means and GMM machine learning model for breast cancer detection. IEEE Access, 9, 146153-146162.
https://doi.org/10.1109/ACCESS.2021.3123425
Jebarani, P.E., Umadevi, N., Dang, H., Pomplun, M. (2021). A novel hybrid K-means and GMM machine learning model for breast cancer detection. IEEE Access. 9, 146153-146162.
https://doi.org/10.1109/ACCESS.2021.3123425
Krithiga, R., & Geetha, P. (2020). Deep learning based breast cancer detection and classification using fuzzy merging techniques. Machine Vision and Applications, 31, 1-18.
https://doi.org/10.1007/s00138-020-01122-0
Melekoodappattu, J. G., & Subbian, P. S. (2023). Automated breast cancer detection using hybrid extreme learning machine classifier. Journal of Ambient Intelligence and Humanized Computing, 14(5), 5489-5498.
https://doi.org/10.1007/s12652-020-02359-3
Melekoodappattu, J.G., Subbian, P.S. (2023). Automated breast cancer detection using hybrid extreme learning machine classifier. J Ambient Intell Humaniz Comput. 14(5), 5489-5498.
https://doi.org/10.1007/s12652-020-02359-3
Raaj, R. S. (2023). Breast cancer detection and diagnosis using hybrid deep learning architecture. Biomedical Signal Processing and Control, 82, 104558.
https://doi.org/10.1016/j.bspc.2022.104558
Raaj, R.S. (2023). Breast cancer detection and diagnosis using hybrid deep learning architecture. Biomed. Signal Process. Control. 82, 104558.
https://doi.org/10.1016/j.bspc.2022.104558
Rezaei, Z. (2021). A review on image-based approaches for breast cancer detection, segmentation, and classification. Expert Syst. Appl. 182, 115204.
https://doi.org/10.1016/j.eswa.2021.115204
Safdar, S., Rizwan, M., Gadekallu, T.R., Javed, A.R., Rahmani, M.K.I., Jawad, K., Bhatia, S. (2022). Bio-imaging-based machine learning algorithm for breast cancer detection. Diagnostics. 12(5), 1134.
https://doi.org/10.3390/diagnostics12051134
Solanki, Y.S., Chakrabarti, P., Jasinski, M., Leonowicz, Z., Bolshev, V., Vinogradov, A., Nami, M. (2021). A hybrid supervised machine learning classifier system for breast cancer prognosis using feature selection and data imbalance handling approaches. Electronics. 10(6), 699.
https://doi.org/10.3390/electronics10060699
Swain, M., Kisan, S., Chatterjee, J.M., Supramaniam, M., Mohanty, S.N., Jhanjhi, N.Z., Abdullah, A. (2020). Hybridized machine learning based fractal analysis techniques for breast cancer classification. Int J Adv Comput Sci Appl. 11(10), 179-184.
https://doi.org/10.14569/IJACSA.2020.0111024
Uddin, K. M. M., Biswas, N., Rikta, S. T., & Dey, S. K. (2023). Machine learning-based diagnosis of breast cancer utilizing feature optimization technique. Computer Methods and Programs in Biomedicine Update, 3, 100098.
https://doi.org/10.1016/j.cmpbup.2023.100098
Wang, H., Liu, B., Long, J., Yu, J., Ji, X., Li, J., Zhao, S. (2023). Integrative analysis identifies two molecular and clinical subsets in Luminal B breast cancer. iScience. 26(9).
https://doi.org/10.1016/j.isci.2023.107466
Wang, Z., Zhang, L., Shu, X., Lv, Q., Yi, Z. (2020). An end-to-end mammogram diagnosis: A new multi-instance and multiscale method based on single-image feature. IEEE Trans. Cogn. Develop. Syst. 13(3), 535-545.
https://doi.org/10.1109/TCDS.2019.2963682
Yan, R., Ren, F., Wang, Z., Wang, L., Zhang, T., Liu, Y., Zhang, F. (2020). Breast cancer histopathological image classification using a hybrid deep neural network. Methods. 173, 52-60.
https://doi.org/10.1016/j.ymeth.2019.06.014
Yurttakal, A.H., Erbay, H., Ikizceli, T., Karaçavus, S. (2020). Detection of breast cancer via deep convolution neural networks using MRI images. Multimed. Tools Appl. 79, 15555-15573.
https://doi.org/10.1007/s11042-019-7479-6
Zhang, J., Chen, B., Zhou, M., Lan, H., Gao, F. (2018). Photoacoustic image classification and segmentation of breast cancer: a feasibility study. IEEE Access. 7, 5457-5466.
https://doi.org/10.1109/ACCESS.2018.2888910