References
Arabi, A. A. (2021). Artificial intelligence in drug design: algorithms, applications, challenges and ethics. Future Drug Discovery, 3(2), FDD59.
https://doi.org/10.4155/fdd-2020-0028
Brown, N., Ertl, P., Lewis, R., Luksch, T., Reker, D., & Schneider, N. (2020). Artificial intelligence in chemistry and drug design. Journal of Computer-Aided Molecular Design, 34, 709-715.
https://doi.org/10.1007/s10822-020-00317-x
Caban, M., Stepnowski, P. (2021). How to decrease pharmaceuticals in the environment? A review. Environ. Chem. Lett. 19, 3115-3138.
https://doi.org/10.1007/s10311-021-01194-y
Duch, W., Swaminathan, K., & Meller, J. (2007). Artificial intelligence approaches for rational drug design and discovery. Current pharmaceutical design, 13(14), 1497-1508.
https://doi.org/10.2174/138161207780765954
Guedeney, N., Cornu, M., Schwalen, F., Kieffer, C., Voisin-Chiret, A.S. (2023). PROTAC technology: A new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today. 28(1), 103395.
https://doi.org/10.1016/j.drudis.2022.103395
Guedes, I.A., Barreto, A.M., Marinho, D., Krempser, E., Kuenemann, M.A., Sperandio, O., Miteva, M.A. (2021). New machine learning and physics-based scoring functions for drug discovery. Sci. Rep. 11(1), 3198.
https://doi.org/10.1038/s41598-021-82410-1
Hessler, G., & Baringhaus, K. H. (2018). Artificial intelligence in drug design. Molecules, 23(10), 2520.
https://doi.org/10.3390/molecules23102520
Kolluri, S., Lin, J., Liu, R., Zhang, Y., Zhang, W. (2022). Machine learning and artificial intelligence in pharmaceutical research and development: a review. Arch Aesthetic Plast Surg. 24, 1-10.
https://doi.org/10.1208/s12248-021-00644-3
Kolluri, S., Lin, J., Liu, R., Zhang, Y., Zhang, W. (2022). Machine learning and artificial intelligence in pharmaceutical research and development: a review. Arch Aesthetic Plast Surg. 24, 1-10.
https://doi.org/10.1208/s12248-021-00644-3
Korshunova, M., Ginsburg, B., Tropsha, A., Isayev, O. (2021). OpenChem: a deep learning toolkit for computational chemistry and drug design. J. Chem. Inf. Model. 61(1), 7-13.
https://doi.org/10.1021/acs.jcim.0c00971
Kulkov, I. (2021). The role of artificial intelligence in business transformation: A case of pharmaceutical companies. Technol. Soc. 66, 101629.
https://doi.org/10.1016/j.techsoc.2021.101629
Lambrinidis, G., Tsantili-Kakoulidou, A. (2021). Multi-objective optimization methods in novel drug design. Expert Opin Drug Discov. 16(6), 647-658.
https://doi.org/10.1080/17460441.2021.1867095
McComb, M., Bies, R., Ramanathan, M. (2022). Machine learning in pharmacometrics: Opportunities and challenges. Br. J. Clin. Pharmacol. 88(4), 1482-1499.
https://doi.org/10.1111/bcp.14801
Mehta, S. The emerging roles of artificial intelligence in chemistry and drug design. In Data-Driven Technologies and Artificial Intelligence in Supply Chain. 158-173. CRC Press.
https://doi.org/10.1201/9781003462163-9
Mei, S., Zhang, K. (2021). A machine learning framework for predicting drug-drug interactions. Sci. Rep. 11(1), 17619.
https://doi.org/10.1038/s41598-021-97193-8
Mirmozaffari, M., Yazdani, R., Shadkam, E., Khalili, S.M., Mahjoob, M., Boskabadi, A. (2022). An integrated artificial intelligence model for efficiency assessment in pharmaceutical companies during the COVID-19 pandemic. Sustainable Operations and Computers, 3, 156-167.
https://doi.org/10.1016/j.susoc.2022.01.003
Pasrija, P., Jha, P., Upadhyaya, P., Khan, M., & Chopra, M. (2022). Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery. Current Topics in Medicinal Chemistry, 22(20), 1692-1727.
https://doi.org/10.2174/1568026622666220701091339
Paul, D., Sanap, G., Shenoy, S., Kalyane, D., Kalia, K., & Tekade, R. K. (2021). Artificial intelligence in drug discovery and development. Drug discovery today, 26(1), 80.
https://doi.org/10.1016/j.drudis.2020.10.010
Ren, P.X., Shang, W.J., Yin, W.C., Ge, H., Wang, L., Zhang, X.L., Bai, F. (2022). A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol. Sin. 43(2), 483-493.
https://doi.org/10.1038/s41401-021-00668-7
Sun, Q., Gong, T., Liu, M., Ren, S., Yang, H., Zeng, S., Xu, H. (2022). Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials, and pharmaceutical research. Phytomedicine. 94, 153805.
https://doi.org/10.1016/j.phymed.2021.153805
Vora, L. K., Gholap, A. D., Jetha, K., Thakur, R. R. S., Solanki, H. K., & Chavda, V. P. (2023). Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics, 15(7), 1916.
https://doi.org/10.3390/pharmaceutics15071916
Wang, L., Ding, J., Pan, L., Cao, D., Jiang, H., & Ding, X. (2019). Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, 194, 103850.
https://doi.org/10.1016/j.chemolab.2019.103850
Xiong, J., Xiong, Z., Chen, K., Jiang, H., Zheng, M. (2021). Graph neural networks for automated de novo drug design. Drug Discov. Today. 26(6), 1382-1393.
https://doi.org/10.1016/j.drudis.2021.02.011
Zeng, X., Wang, F., Luo, Y., Kang, S.G., Tang, J., Lightstone, F.C., Cheng, F. (2022). Deep generative molecular design reshapes drug discovery. Cell Rep. Med.
https://doi.org/10.1016/j.xcrm.2022.100794