Energy Environment and Economy

Energy, Environment and Sustainable Sciences | online ISSN 3069-0935
0
Citations
11.3k
Views
14
Articles
RESEARCH ARTICLE   (Open Access)

Exploring Climate Change Prediction and Mitigation Strategies with Large Language Models (LLM)

Md Saiful Islam1, Li Xiangdong1, Md Mahmudul Hasan3,Jubayer Ahmed1, Md Ziaul Haque Shipon1, Soyed Md Mahid Hasan1, Shaharia Ahmed2*

+ Author Affiliations

Energy Environment and Economy 3 (1) 1-11 https://doi.org/10.25163/energy.3110401

Submitted: 27 September 2025 Revised: 26 October 2025  Accepted: 23 November 2025  Published: 26 November 2025 


Abstract

Concerning climate change, there is a growing demand for accessible tools that can provide reliable future climate information to support planning, finance, and other decision-making processes. Large language models (LLMs), such as GPT-4 and BERT, present a promising approach to bridging the gap between complex climate data, with the potential to revolutionize data analysis and decision-making across various sectors. However, a significant challenge remains in assessing LLMs' accuracy and reliability in predicting future climate trends. In this study, we introduce a hybrid LLM framework that combines Large Language Models (LLMs) with General Circulation Models (GCMs) to improve climate modeling by increasing prediction accuracy, uncovering hidden patterns in historical data, simulating policy outcomes, and encouraging public engagement. A series of experiments was designed to evaluate the performance of GPT-4 as a hybrid LLM and BERT as a traditional LLM under different conditions. Our results indicate that GPT-4, as a hybrid LLM, reduces prediction errors by up to 19% and produces policy analyses aligned with expert assessments. Although challenges remain in energy efficiency and data biases, our findings demonstrate the transformative potential of LLMs in integrating qualitative human insights with quantitative climate science, emphasizing their crucial role in advancing global climate goals.

Keywords: Climate prediction, Large Language Models, Multimodal Data Fusion, AI-Driven Climate Policy Analysis, Hybrid and Traditional LLM

References

Ahmed, S., Shan, D., & Zhou, W. (2025). Advances in Recycling and Resource Recovery of Post-Consumer Polyethylene Terephthalate (PET) Waste for Sustainable Waste Management and Circular Economy. Energy Environment & Economy, 3(1), 1–18. https://doi.org/10.25163/energy.3110048

Alizadeh, O. (2022). Advances and challenges in climate modeling. Climatic Change, 170(1–2), 18. https://doi.org/10.1007/s10584-021-03298-4

Bulian, J., Schäfer, M. S., Amini, A., Lam, H., Ciaramita, M., Gaiarin, B., Hübscher, M. C., Buck, C., Mede, N. G., Leippold, M., & Strauß, N. (2023). Assessing Large Language Models on Climate Information. https://doi.org/10.48550/arxiv.2310.02932

Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W. L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., … Péan, C. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (First). Intergovernmental Panel on Climate Change (IPCC). https://doi.org/10.59327/IPCC/AR6-9789291691647

Cao, Y., Zhao, H., Cheng, Y., Shu, T., Chen, Y., Liu, G., Liang, G., Zhao, J., Yan, J., & Li, Y. (2025). Survey on Large Language Model-Enhanced Reinforcement Learning: Concept, Taxonomy, and Methods. IEEE Transactions on Neural Networks and Learning Systems, 36(6), 9737–9757. https://doi.org/10.1109/tnnls.2024.3497992

Datasets | Climate Data Online (CDO) | National Climatic Data Center (NCDC). (n.d.). Retrieved September 21, 2025, from https://www.ncei.noaa.gov/cdo-web/datasets

Ebrahimi, S., Arik, S. O., Dong, Y., & Pfister, T. (2023). LANISTR: Multimodal Learning from Structured and Unstructured Data (Version 3). arXiv. https://doi.org/10.48550/arxiv.2305.16556

Fernández, J., Frías, M. D., Cabos, W. D., Cofiño, A. S., Domínguez, M., Fita, L., Gaertner, M. A., García-Díez, M., Gutiérrez, J. M., Jiménez-Guerrero, P., Liguori, G., Montávez, J. P., Romera, R., & Sánchez, E. (2019). Consistency of climate change projections from multiple global and regional model intercomparison projects. Climate Dynamics, 52(1–2), 1139–1156. https://doi.org/10.1007/s00382-018-4181-8

Koldunov, N., & Jung, T. (2024). Local climate services for all, courtesy of large language models. Communications Earth & Environment, 5(1), 13. https://doi.org/10.1038/s43247-023-01199-1

Krawczyk, F., & Braun, A. Ch. (2025). Models like heroes? Making Integrated Assessment Models (IAMs) ready for deep decarbonization and a socio-economic transformation. Energy Research & Social Science, 121, 103959. https://doi.org/10.1016/j.erss.2025.103959

Lee, J., & Hwang, S. (2023). Ungauged Basin Flood Prediction Using Long Short-Term Memory and Unstructured Social Media Data. Water, 15(21), 3818. https://doi.org/10.3390/w15213818

Li, J., Gao, Y., Yang, Y., Bai, Y., Zhou, X., Li, Y., Sun, H., Liu, Y., Si, X., Ye, Y., Wu, Y., Lin, Y., Xu, B., Ren, B., Feng, C., & Huang, H. (2025). Fundamental Capabilities and Applications of Large Language Models: A Survey. ACM Computing Surveys, 3735632. https://doi.org/10.1145/3735632

Li, N., Zahra, S., Brito, M., Flynn, C., Görnerup, O., Worou, K., Kurfali, M., Meng, C., Thiery, W., Zscheischler, J., Messori, G., & Nivre, J. (2024). Using LLMs to Build a Database of Climate Extreme Impacts. Proceedings of the 1st Workshop on Natural Language Processing Meets Climate Change (ClimateNLP 2024), 93–110. https://doi.org/10.18653/v1/2024.climatenlp-1.7

Liu, X., Sun, J., Lei, A., & Zhu, J. (2024). Research and Applications of Large Language Models for Converting Unstructured Data into Structured Data. 2024 3rd International Conference on Cloud Computing, Big Data Application and Software Engineering (CBASE), 305–308. https://doi.org/10.1109/CBASE64041.2024.10824634

Lu, S., & Cosgun, E. (2024). Boosting GPT models for genomics analysis: Generating trusted genetic variant annotations and interpretations through RAG and Fine-tuning. Bioinformatics Advances, 5(1), vbaf019. https://doi.org/10.1093/bioadv/vbaf019

Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Marotzke, J. (2019). The Max Planck Institute Grand Ensemble: Enabling the Exploration of Climate System Variability. Journal of Advances in Modeling Earth Systems, 11(7), 2050–2069. https://doi.org/10.1029/2019MS001639

Mansfield, L. A., Nowack, P. J., Kasoar, M., Everitt, R. G., Collins, W. J., & Voulgarakis, A. (2020). Predicting global patterns of long-term climate change from short-term simulations using machine learning. Npj Climate and Atmospheric Science, 3(1), 44. https://doi.org/10.1038/s41612-020-00148-5

Mathias, J., Debeljak, M., Deffuant, G., Diemer, A., Dierickx, F., Donges, J. F., Gladkykh, G., Heitzig, J., Holtz, G., Obergassel, W., Pellaud, F., Sánchez, A., Trajanov, A., & Videira, N. (2020). Grounding Social Foundations for Integrated Assessment Models of Climate Change. Earth’s Future, 8(7), e2020EF001573. https://doi.org/10.1029/2020EF001573

McDonald, C., Malloy, T., Nguyen, T. N., & Gonzalez, C. (2024). Exploring the Path from Instructions to Rewards with Large Language Models in Instance-Based Learning. Proceedings of the AAAI Symposium Series, 2(1), 334–339. https://doi.org/10.1609/aaaiss.v2i1.27697

Nguyen, H., Nguyen, V., López-Fierro, S., Ludovise, S., & Santagata, R. (2024). Simulating Climate Change Discussion with Large Language Models: Considerations for Science Communication at Scale. Proceedings of the Eleventh ACM Conference on Learning @ Scale, 28–38. https://doi.org/10.1145/3657604.3662033

Nguyen, H., Nguyen, V., Ludovise, S., & Santagata, R. (2024). Misrepresentation or inclusion: Promises of generative artificial intelligence in climate change education. Learning, Media and Technology, 1–17. https://doi.org/10.1080/17439884.2024.2435834

Ntinopoulos, V., Rodriguez Cetina Biefer, H., Tudorache, I., Papadopoulos, N., Odavic, D., Risteski, P., Haeussler, A., & Dzemali, O. (2025). Large language models for data extraction from unstructured and semi-structured electronic health records: A multiple model performance evaluation. BMJ Health & Care Informatics, 32(1), e101139. https://doi.org/10.1136/bmjhci-2024-101139

O’Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461–3482. https://doi.org/10.5194/gmd-9-3461-2016

Rahman, S. M., Alkhalaf, O. H., Alam, M. S., Tiwari, S. P., Shafiullah, M., Al-Judaibi, S. M., & Al-Ismail, F. S. (2024). Climate Change Through Quantum Lens: Computing and Machine Learning. Earth Systems and Environment, 8(3), 705–722. https://doi.org/10.1007/s41748-024-00411-2

Rai, M., Breitner, S., Wolf, K., Peters, A., Schneider, A., & Chen, K. (2022). Future temperature-related mortality considering physiological and socioeconomic adaptation: A modelling framework. The Lancet Planetary Health, 6(10), e784–e792. https://doi.org/10.1016/S2542-5196(22)00195-4

Raiaan, M. A. K., Mukta, Md. S. H., Fatema, K., Fahad, N. M., Sakib, S., Mim, M. M. J., Ahmad, J., Ali, M. E., & Azam, S. (2024). A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. IEEE Access, 12, 26839–26874. https://doi.org/10.1109/ACCESS.2024.3365742

Rivas, M. D. G., & Gonzalo, J. (2025). Climate change heterogeneity: A new quantitative approach. PLOS ONE, 20(1), e0317208. https://doi.org/10.1371/journal.pone.0317208

Schoenegger, P., Tuminauskaite, I., Park, P. S., & Tetlock, P. E. (2024). Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Rival Human Crowd Accuracy (Version 6). arXiv. https://doi.org/10.48550/ARXIV.2402.19379

Smith, C., Cummins, D. P., Fredriksen, H.-B., Nicholls, Z., Meinshausen, M., Allen, M., Jenkins, S., Leach, N., Mathison, C., & Partanen, A.-I. (2024). fair-calibrate v1.4.1: Calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections. Geoscientific Model Development, 17(23), 8569–8592. https://doi.org/10.5194/gmd-17-8569-2024

Tebaldi, C., Ranasinghe, R., Vousdoukas, M., Rasmussen, D. J., Vega-Westhoff, B., Kirezci, E., Kopp, R. E., Sriver, R., & Mentaschi, L. (2021). Extreme sea levels at different global warming levels. Nature Climate Change, 11(9), 746–751. https://doi.org/10.1038/s41558-021-01127-1

Thacker, I., French, H., & Feder, S. (2025). Estimating climate change numbers: Mental computation strategies that can support science learning. International Journal of Science Education, 47(1), 1–22. https://doi.org/10.1080/09500693.2024.2307473

Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., & Knutti, R. (2020). Past warming trend constrains future warming in CMIP6 models. Science Advances, 6(12). https://doi.org/10.1126/sciadv.aaz9549

Vu, H. T., Baines, A., & Nguyen, N. (2023). Fact-Checking Climate Change: An Analysis of Claims and Verification Practices by Fact-Checkers in Four Countries. Journalism & Mass Communication Quarterly, 100(2), 286–307. https://doi.org/10.1177/10776990221138058

Wang, Y., & Karimi, H. A. (2025). Exploring large language models for climate forecasting. Applied Computing and Intelligence, 5(1), 1–13. https://doi.org/10.3934/aci.2025001

Webersinke, N., Kraus, M., Bingler, J., & Leippold, M. (2022). CLIMATEBERT: A Pretrained Language Model for Climate-Related Text. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4229146

Werners, S. E., Wise, R. M., Butler, J. R. A., Totin, E., & Vincent, K. (2021). Adaptation pathways: A review of approaches and a learning framework. Environmental Science & Policy, 116, 266–275. https://doi.org/10.1016/j.envsci.2020.11.003

Yousefpour, R., Temperli, C., Jacobsen, J. B., Thorsen, B. J., Meilby, H., Lexer, M. J., Lindner, M., Bugmann, H., Borges, J. G., Palma, J. H. N., Ray, D., Zimmermann, N. E., Delzon, S., Kremer, A., Kramer, K., Reyer, C. P. O., Lasch-Born, P., Garcia-Gonzalo, J., & Hanewinkel, M. (2017). A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society, 22(4), art40. https://doi.org/10.5751/ES-09614-220440

Zhang, Y., Liu, P., Xu, Y., & Zhang, M. (2025). Prediction of cold region dew volume based on an ECOA-BiTCN-BiLSTM hybrid model. Scientific Reports, 15(1), 4265. https://doi.org/10.1038/s41598-024-74097-x


View Dimensions


View Plumx


View Altmetric



7
Save
0
Citation
213
View
2
Share