Integrative Biomedical Research | Online ISSN  2207-872X
REVIEWS   (Open Access)

PEGylated Liposomal Teriflunomide: A Novel Approach of Targeted Breast Cancer Treatment to Advance Efficacy and Minimize Adverse Effects

Dipanjan Koley1, Vaibhav Walia2, Mohammed. Aslam3, Manvi Singh4*

+ Author Affiliations

Journal of Angiotherapy 9(1) 1-8 https://doi.org/10.25163/angiotherapy.9110132

Submitted: 12 November 2024  Revised: 06 January 2025  Published: 07 January 2025 

Abstract

Breast cancer (BC) is a life-threatening disease and the most common cancer among females, with 2.3 million cases diagnosed annually worldwide. Current treatment modalities for BC include radiation therapy, hormonal therapy, and surgical interventions, each offering therapeutic benefits but also presenting limitations and adverse effects. As a result, researchers globally are seeking novel, effective, and safer treatment options for BC patients. BC is characterized by the overexpression of human epidermal growth factor receptor 2 (HER2) and the activation of signaling pathways such as mitogen-activated protein kinases (MAPKs). Teriflunomide (TFN), an active metabolite of leflunomide, has demonstrated antiproliferative and anti-inflammatory properties. TFN inhibits de novo pyrimidine synthesis and various protein kinases, including MAPK and phosphoinositide 3-kinase (PI3K), both of which play key roles in BC pathogenesis. By targeting these signaling pathways, TFN has shown potential anticancer effects in BC. PEGylated liposomes represent a novel drug delivery system for BC treatment. This hypothesis proposes the development of teriflunomide-loaded PEGylated liposomes to enhance its therapeutic efficacy against BC. PEGylation may improve TFN’s bioavailability, tumor penetration, and anticancer activity. The synergistic interaction between the delivery system, the drug, and targeting ligands is expected to amplify TFN’s anticancer effects. This approach offers a promising, innovative solution for BC treatment and warrants further clinical investigation to validate its efficacy and safety.

Keywords: Breast Cancer, Liposome, PEGylation, Teriflunomide, Targeted Treatment

References

Ades, F., Zardavas, D., Bozovic-Spasojevic, I., Pugliano, L., Fumagalli, D., de Azambuja, E., Viale, G., Sotiriou, C., & Piccart, M. (2014). Luminal B breast cancer: molecular characterization, clinical management, and future perspectives. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 32(25), 2794–2803. https://doi.org/10.1200/JCO.2013.54.1870

Ahmad, J., Garg, A., Mustafa, G., Ahmad, M. Z., Aslam, M., & Mishra, A. (2023). Hybrid Quantum Dot as Promising Tools for Theranostic Application in Cancer. Electronics, 12(4), 972.

Alavi, M., & Hamidi, M. (2019). Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 34(1), 10.1515/dmpt-2018-0032. https://doi.org/10.1515/dmpt-2018-0032

Ali, R., Nicholas, R. S., & Muraro, P. A. (2013). Drugs in development for relapsing multiple sclerosis. Drugs, 73(7), 625–650. https://doi.org/10.1007/s40265-013-0030-6

Andresen, T. L., Jensen, S. S., & Jørgensen, K. (2005). Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Progress in lipid research, 44(1), 68–97. https://doi.org/10.1016/j.plipres.2004.12.001

Aslam, M., Aqil, M., Ahad, A., Najmi, A. K., Sultana, Y., & Ali, A. (2016). Application of Box–Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: Optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. Journal of Molecular Liquids, 219, 897-908

Aslam, M., Javed, M. N., Deeb, H. H., Nicola, M. K., Mirza, M. A., Alam, M. S., & Waziri, A. (2022). Lipid nanocarriers for neurotherapeutics: Introduction, challenges, blood-brain barrier, and promises of delivery approaches. CNS & Neurological Disorders-Drug Targets-CNS & Neurological Disorders), 21(10), 952-965.

Badve, S., Dabbs, D. J., Schnitt, S. J., Baehner, F. L., Decker, T., Eusebi, V., Fox, S. B., Ichihara, S., Jacquemier, J., Lakhani, S. R., Palacios, J., Rakha, E. A., Richardson, A. L., Schmitt, F. C., Tan, P. H., Tse, G. M., Weigelt, B., Ellis, I. O., & Reis-Filho, J. S. (2011). Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 24(2), 157–167. https://doi.org/10.1038/modpathol.2010.200

Baines C. J. (1992). Physical examination of the breasts in screening for breast cancer. Journal of gerontology, 47 Spec No, 63–67.

Baumann, P., Mandl-Weber, S., Völkl, A., Adam, C., Bumeder, I., Oduncu, F., & Schmidmaier, R. (2009). Dihydroorotate dehydrogenase inhibitor A771726 (leflunomide) induces apoptosis and diminishes proliferation of multiple myeloma cells. Molecular cancer therapeutics, 8(2), 366–375. https://doi.org/10.1158/1535-7163.MCT-08-0664

Bellanger, M., Zeinomar, N., Tehranifar, P., & Terry, M. B. (2018). Are Global Breast Cancer Incidence and Mortality Patterns Related to Country-Specific Economic Development and Prevention Strategies?. Journal of global oncology, 4, 1–16. https://doi.org/10.1200/JGO.17.00207

Blume, G., & Cevc, G. (1990). Liposomes for the sustained drug release in vivo. Biochimica et biophysica acta, 1029(1), 91–97. https://doi.org/10.1016/0005-2736(90)90440-y

Boers-Sonderen, M. J., de Geus-Oei, L. F., Desar, I. M., van der Graaf, W. T., Oyen, W. J., Ottevanger, P. B., & van Herpen, C. M. (2014). Temsirolimus and pegylated liposomal doxorubicin (PLD) combination therapy in breast, endometrial, and ovarian cancer: phase Ib results and prediction of clinical outcome with FDG-PET/CT. Targeted oncology, 9(4), 339–347. https://doi.org/10.1007/s11523-014-0309-x

Brinkman, J. A., & El-Ashry, D. (2009). ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. Journal of mammary gland biology and neoplasia, 14(1), 67–78. https://doi.org/10.1007/s10911-009-9113-0

Brinton, L. A., Schairer, C., Hoover, R. N., & Fraumeni, J. F., Jr (1988). Menstrual factors and risk of breast cancer. Cancer investigation, 6(3), 245–254. https://doi.org/10.3109/07357908809080645

Bruneau, J. M., Yea, C. M., Spinella-Jaegle, S., Fudali, C., Woodward, K., Robson, P. A., Sautès, C., Westwood, R., Kuo, E. A., Williamson, R. A., & Ruuth, E. (1998). Purification of human dihydro-orotate dehydrogenase and its inhibition by A77 1726, the active metabolite of leflunomide. The Biochemical journal, 336 ( Pt 2)(Pt 2), 299–303. https://doi.org/10.1042/bj3360299

Burotto, M., Chiou, V. L., Lee, J. M., & Kohn, E. C. (2014). The MAPK pathway across different malignancies: a new perspective. Cancer, 120(22), 3446–3456. https://doi.org/10.1002/cncr.28864

Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and molecular biology reviews : MMBR, 75(1), 50–83. https://doi.org/10.1128/MMBR.00031-10

Chang, A. E., Wu, Q. V., Jenkins, I. C., Specht, J. M., Gadi, V. K., Gralow, J. R., Salazar, L. G., Kurland, B. F., & Linden, H. M. (2018). Phase I/II Trial of Combined Pegylated Liposomal Doxorubicin and Cyclophosphamide in Metastatic Breast Cancer. Clinical breast cancer, 18(1), e143–e149. https://doi.org/10.1016/j.clbc.2017.10.005

Chapnick, D. A., Warner, L., Bernet, J., Rao, T., & Liu, X. (2011). Partners in crime: the TGFβ and MAPK pathways in cancer progression. Cell & bioscience, 1, 42. https://doi.org/10.1186/2045-3701-1-42

Cheang, M. C., Chia, S. K., Voduc, D., Gao, D., Leung, S., Snider, J., Watson, M., Davies, S., Bernard, P. S., Parker, J. S., Perou, C. M., Ellis, M. J., & Nielsen, T. O. (2009). Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. Journal of the National Cancer Institute, 101(10), 736–750. https://doi.org/10.1093/jnci/djp082

Cheng, M., Song, Z., Qi, Y., Wang, X., Zhang, L., Shi, J., & Wang, M. (2019). A Dose-Escalating Pilot Study (NCT03017404) of Pegylated Liposomal Doxorubicin and Cyclophosphamide, Followed by Docetaxel Administration as a Neoadjuvant Chemotherapy Regimen in Patients with Locally Advanced Breast Cancer. Oncology research and treatment, 42(5), 269–274. https://doi.org/10.1159/000498993

Cherwinski, H. M., Cohn, R. G., Cheung, P., Webster, D. J., Xu, Y. Z., Caulfield, J. P., Young, J. M., Nakano, G., & Ransom, J. T. (1995). The immunosuppressant leflunomide inhibits lymphocyte proliferation by inhibiting pyrimidine biosynthesis. The Journal of pharmacology and experimental therapeutics, 275(2), 1043–1049.

Collaborative Group on Hormonal Factors in Breast Cancer (2012). Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. The Lancet. Oncology, 13(11), 1141–1151. https://doi.org/10.1016/S1470-2045(12)70425-4

Cook, M. R., Pinchot, S. N., Jaskula-Sztul, R., Luo, J., Kunnimalaiyaan, M., & Chen, H. (2010). Identification of a novel Raf-1 pathway activator that inhibits gastrointestinal carcinoid cell growth. Molecular cancer therapeutics, 9(2), 429–437. https://doi.org/10.1158/1535-7163.MCT-09-0718

Cserni G. (2020). Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica, 112(1), 25–41. https://doi.org/10.32074/1591-951X-1-20

Dellapasqua, S., Trillo Aliaga, P., Munzone, E., Bagnardi, V., Pagan, E., Montagna, E., Cancello, G., Ghisini, R., Sangalli, C., Negri, M., Mazza, M., Iorfida, M., Cardillo, A., Sciandivasci, A., Bianco, N., De Maio, A. P., Milano, M., Campennì, G. M., Sansonno, L., Viale, G., … Colleoni, M. (2021). Pegylated Liposomal Doxorubicin (Caelyx®) as Adjuvant Treatment in Early-Stage Luminal B-like Breast Cancer: A Feasibility Phase II Trial. Current oncology (Toronto, Ont.), 28(6), 5167–5178. https://doi.org/10.3390/curroncol28060433

DeWitt, J. P., Thomas, K. L., & Sturgeon, A. (2017). Regression of basal cell carcinomas in multiple sclerosis patient on Aubagio treatment. The Southwest Respiratory and Critical Care Chronicles, 5(21), 55-56.

Dias, K., Dvorkin-Gheva, A., Hallett, R. M., Wu, Y., Hassell, J., Pond, G. R., Levine, M., Whelan, T., & Bane, A. L. (2017). Claudin-Low Breast Cancer; Clinical & Pathological Characteristics. PloS one, 12(1), e0168669. https://doi.org/10.1371/journal.pone.0168669

Dietrich, S., Krämer, O. H., Hahn, E., Schäfer, C., Giese, T., Hess, M., Tretter, T., Rieger, M., Hüllein, J., Zenz, T., Ho, A. D., Dreger, P., & Luft, T. (2012). Leflunomide induces apoptosis in fludarabine-resistant and clinically refractory CLL cells. Clinical cancer research : an official journal of the American Association for Cancer Research, 18(2), 417–431. https://doi.org/10.1158/1078-0432.CCR-11-1049

D'souza, A. A., & Shegokar, R. (2016). Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert opinion on drug delivery, 13(9), 1257–1275. https://doi.org/10.1080/17425247.2016.1182485

El-Habr, E. A., Levidou, G., Trigka, E. A., Sakalidou, J., Piperi, C., Chatziandreou, I., Spyropoulou, A., Soldatos, R., Tomara, G., Petraki, K., Samaras, V., Zisakis, A., Varsos, V., Vrettakos, G., Boviatsis, E., Patsouris, E., Saetta, A. A., & Korkolopoulou, P. (2014). Complex interactions between the components of the PI3K/AKT/mTOR pathway, and with components of MAPK, JAK/STAT and Notch-1 pathways, indicate their involvement in meningioma development. Virchows Archiv : an international journal of pathology, 465(4), 473–485. https://doi.org/10.1007/s00428-014-1641-3

Elmore, J. G., Armstrong, K., Lehman, C. D., & Fletcher, S. W. (2005). Screening for breast cancer. JAMA, 293(10), 1245–1256. https://doi.org/10.1001/jama.293.10.1245

Eroles, P., Bosch, A., Pérez-Fidalgo, J. A., & Lluch, A. (2012). Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer treatment reviews, 38(6), 698–707. https://doi.org/10.1016/j.ctrv.2011.11.005

Fanger, G. R., Johnson, N. L., & Johnson, G. L. (1997). MEK kinases are regulated by EGF and selectively interact with Rac/Cdc42. The EMBO journal, 16(16), 4961–4972. https://doi.org/10.1093/emboj/16.16.4961

Filardo, E. J., Quinn, J. A., Frackelton, A. R., Jr, & Bland, K. I. (2002). Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Molecular endocrinology (Baltimore, Md.), 16(1), 70–84. https://doi.org/10.1210/mend.16.1.0758

Fresno Vara, J. A., Casado, E., de Castro, J., Cejas, P., Belda-Iniesta, C., & González-Barón, M. (2004). PI3K/Akt signalling pathway and cancer. Cancer treatment reviews, 30(2), 193–204. https://doi.org/10.1016/j.ctrv.2003.07.007

Fu, M., Tang, W., Liu, J. J., Gong, X. Q., Kong, L., Yao, X. M., Jing, M., Cai, F. Y., Li, X. T., & Ju, R. J. (2020). Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. Journal of drug targeting, 28(3), 245–258. https://doi.org/10.1080/1061186X.2019.1656725

Gavilá, J., Oliveira, M., Pascual, T., Perez-Garcia, J., Gonzàlez, X., Canes, J., Paré, L., Calvo, I., Ciruelos, E., Muñoz, M., Virizuela, J. A., Ruiz, I., Andrés, R., Perelló, A., Martínez, J., Morales, S., Marín-Aguilera, M., Martínez, D., Quero, J. C., Llombart-Cussac, A., … Prat, A. (2019). Safety, activity, and molecular heterogeneity following neoadjuvant non-pegylated liposomal doxorubicin, paclitaxel, trastuzumab, and pertuzumab in HER2-positive breast cancer (Opti-HER HEART): an open-label, single-group, multicenter, phase 2 trial. BMC medicine, 17(1), 8. https://doi.org/10.1186/s12916-018-1233-1

Ghasemi, M., Turnbull, T., Sebastian, S., & Kempson, I. (2021). The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. International journal of molecular sciences, 22(23), 12827. https://doi.org/10.3390/ijms222312827

Ghoncheh, M., Pournamdar, Z., & Salehiniya, H. (2016). Incidence and Mortality and Epidemiology of Breast Cancer in the World. Asian Pacific journal of cancer prevention : APJCP, 17(S3), 43–46. https://doi.org/10.7314/apjcp.2016.17.s3.43

Gierlich, P., Mata, A. I., Donohoe, C., Brito, R. M. M., Senge, M. O., & Gomes-da-Silva, L. C. (2020). Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules (Basel, Switzerland), 25(22), 5317. https://doi.org/10.3390/molecules25225317

Gil-Gil, M. J., Bellet, M., Morales, S., Ojeda, B., Manso, L., Mesia, C., Garcia-Martínez, E., Martinez-Jáñez, N., Melé, M., Llombart, A., Pernas, S., Villagrasa, P., Blasco, C., & Baselga, J. (2015). Pegylated liposomal doxorubicin plus cyclophosphamide followed by paclitaxel as primary chemotherapy in elderly or cardiotoxicity-prone patients with high-risk breast cancer: results of the phase II CAPRICE study. Breast cancer research and treatment, 151(3), 597–606. https://doi.org/10.1007/s10549-015-3415-2

Gold, R., & Wolinsky, J. S. (2011). Pathophysiology of multiple sclerosis and the place of teriflunomide. Acta neurologica Scandinavica, 124(2), 75–84. https://doi.org/10.1111/j.1600-0404.2010.01444.x

Haddad, T. C., D'Assoro, A., Suman, V., Opyrchal, M., Peethambaram, P., Liu, M. C., Goetz, M. P., & Ingle, J. N. (2018). Phase I trial to evaluate the addition of alisertib to fulvestrant in women with endocrine-resistant, ER+ metastatic breast cancer. Breast cancer research and treatment, 168(3), 639–647. https://doi.org/10.1007/s10549-017-4616-7

Hagimori, M., Kato, N., Orimoto, A., Suga, T., & Kawakami, S. (2023). Development of Triple-Negative Breast Cancer-Targeted Liposomes with MUC16 Binding Peptide Ligand in Triple-Negative Breast Cancer Cells. Journal of pharmaceutical sciences, 112(6), 1740–1745. https://doi.org/10.1016/j.xphs.2023.02.025

Hagimori, M., Kato, N., Orimoto, A., Suga, T., & Kawakami, S. (2023). Development of Triple-Negative Breast Cancer-Targeted Liposomes with MUC16 Binding Peptide Ligand in Triple-Negative Breast Cancer Cells. Journal of pharmaceutical sciences, 112(6), 1740–1745. https://doi.org/10.1016/j.xphs.2023.02.025

Hail, N., Jr, Chen, P., & Bushman, L. R. (2010). Teriflunomide (leflunomide) promotes cytostatic, antioxidant, and apoptotic effects in transformed prostate epithelial cells: evidence supporting a role for teriflunomide in prostate cancer chemoprevention. Neoplasia (New York, N.Y.), 12(6), 464–475. https://doi.org/10.1593/neo.10168

Hail, N., Jr, Chen, P., Kepa, J. J., & Bushman, L. R. (2012). Evidence supporting a role for dihydroorotate dehydrogenase, bioenergetics, and p53 in selective teriflunomide-induced apoptosis in transformed versus normal human keratinocytes. Apoptosis : an international journal on programmed cell death, 17(3), 258–268. https://doi.org/10.1007/s10495-011-0667-0

Harbeck, N., Saupe, S., Jäger, E., Schmidt, M., Kreienberg, R., Müller, L., Otremba, B. J., Waldenmaier, D., Dorn, J., Warm, M., Scholz, M., Untch, M., de Wit, M., Barinoff, J., Lück, H. J., Harter, P., Augustin, D., Harnett, P., Beckmann, M. W., Al-Batran, S. E., … PELICAN Investigators (2017). A randomized phase III study evaluating pegylated liposomal doxorubicin versus capecitabine as first-line therapy for metastatic breast cancer: results of the PELICAN study. Breast cancer research and treatment, 161(1), 63–72. https://doi.org/10.1007/s10549-016-4033-3

Harlow, S. D., & Paramsothy, P. (2011). Menstruation and the menopausal transition. Obstetrics and gynecology clinics of North America, 38(3), 595–607. https://doi.org/10.1016/j.ogc.2011.05.010

Howlader, N., Altekruse, S. F., Li, C. I., Chen, V. W., Clarke, C. A., Ries, L. A., & Cronin, K. A. (2014). US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. Journal of the National Cancer Institute, 106(5), dju055. https://doi.org/10.1093/jnci/dju055

Huang, G., & Huang, H. (2018). Application of hyaluronic acid as carriers in drug delivery. Drug delivery, 25(1), 766–772. https://doi.org/10.1080/10717544.2018.1450910

Huang, O., Zhang, W., Zhi, Q., Xue, X., Liu, H., Shen, D., Geng, M., Xie, Z., & Jiang, M. (2015). Teriflunomide, an immunomodulatory drug, exerts anticancer activity in triple negative breast cancer cells. Experimental biology and medicine (Maywood, N.J.), 240(4), 426–437. https://doi.org/10.1177/1535370214554881

Iyer, V., Klebba, I., McCready, J., Arendt, L. M., Betancur-Boissel, M., Wu, M. F., Zhang, X., Lewis, M. T., & Kuperwasser, C. (2012). Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer research, 72(11), 2705–2713. https://doi.org/10.1158/0008-5472.CAN-11-3287

Jehn, C. F., Hemmati, P., Lehenbauer-Dehm, S., Kümmel, S., Flath, B., & Schmid, P. (2016). Biweekly Pegylated Liposomal Doxorubicin (Caelyx) in Heavily Pretreated Metastatic Breast Cancer: A Phase 2 Study. Clinical breast cancer, 16(6), 514–519. https://doi.org/10.1016/j.clbc.2016.06.001

Jiang, H., Li, H., Song, G., Di, L., Shao, B., Yan, Y., Liu, X., Chen, Y., Zhang, R., Ran, R., Liu, Y., Gui, X., Wang, N., & Wang, H. (2023). Pegylated liposomal doxorubicin (Duomeisu®) monotherapy in patients with HER2-negative metastatic breast cancer heavily pretreated with anthracycline and taxanes: a single-arm, phase II study. Breast cancer research and treatment, 199(1), 67–79. https://doi.org/10.1007/s10549-023-06894-3

Jiang, L., Zhang, W., Li, W., Ling, C., & Jiang, M. (2018). Anti-inflammatory drug, leflunomide and its metabolite teriflunomide inhibit NSCLC proliferation in vivo and in vitro. Toxicology letters, 282, 154–165. https://doi.org/10.1016/j.toxlet.2017.10.013

Jiang, Q. F., Wu, T. T., Yang, J. Y., Dong, C. R., Wang, N., Liu, X. H., & Liu, Z. M. (2013). 17β-estradiol promotes the invasion and migration of nuclear estrogen receptor-negative breast cancer cells through cross-talk between GPER1 and CXCR1. The Journal of steroid biochemistry and molecular biology, 138, 314–324. https://doi.org/10.1016/j.jsbmb.2013.07.011

Kaur R. (2005). Breast cancer. Lancet (London, England), 365(9472), 1742. https://doi.org/10.1016/S0140-6736(05)66547-6

Keegan, N. M., Gleeson, J. P., Hennessy, B. T., & Morris, P. G. (2018). PI3K inhibition to overcome endocrine resistance in breast cancer. Expert opinion on investigational drugs, 27(1), 1–15. https://doi.org/10.1080/13543784.2018.1417384

Khan, Z., Haider, F., Aslam, M., & Haider, T. (2022). Development and Evaluation of Myricetin Nanoemulsion for Liver Cancer Therapy: In-vitro and cell line study. Journal of Pharmaceutical Sciences and Research, 14(9), 908-917.

Khojasteh Poor, F., Keivan, M., Ramazii, M., Ghaedrahmati, F., Anbiyaiee, A., Panahandeh, S., Khoshnam, S. E., & Farzaneh, M. (2021). Mini review: The FDA-approved prescription drugs that target the MAPK signaling pathway in women with breast cancer. Breast disease, 40(2), 51–62. https://doi.org/10.3233/BD-201063

Klibanov, A. L., Maruyama, K., Torchilin, V. P., & Huang, L. (1990). Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS letters, 268(1), 235–237. https://doi.org/10.1016/0014-5793(90)81016-h

Kong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H., & Lee, S. (2018). Emerging Roles of Vascular Cell Adhesion Molecule-1 (VCAM-1) in Immunological Disorders and Cancer. International journal of molecular sciences, 19(4), 1057. https://doi.org/10.3390/ijms19041057

Landais, A., Alhendi, R., Gouverneur, A., & Teron-Aboud, B. (2017). A case of lymphoma in a patient on teriflunomide treatment for relapsing multiple sclerosis. Multiple sclerosis and related disorders, 17, 92–94. https://doi.org/10.1016/j.msard.2017.07.001

Larionov, A. A., Berstein, L. M., & Miller, W. R. (2002). Local uptake and synthesis of oestrone in normal and malignant postmenopausal breast tissues. The Journal of steroid biochemistry and molecular biology, 81(1), 57–64. https://doi.org/10.1016/s0960-0760(02)00047-x

Lauricella, M., Carlisi, D., Giuliano, M., Calvaruso, G., Cernigliaro, C., Vento, R., & D'Anneo, A. (2016). The analysis of estrogen receptor-α positive breast cancer stem-like cells unveils a high expression of the serpin proteinase inhibitor PI-9: Possible regulatory mechanisms. International journal of oncology, 49(1), 352–360. https://doi.org/10.3892/ijo.2016.3495

Lavoie, H., & Therrien, M. (2015). Regulation of RAF protein kinases in ERK signalling. Nature reviews. Molecular cell biology, 16(5), 281–298. https://doi.org/10.1038/nrm3979

Lebrun, C., & Rocher, F. (2018). Cancer Risk in Patients with Multiple Sclerosis: Potential Impact of Disease-Modifying Drugs. CNS drugs, 32(10), 939–949. https://doi.org/10.1007/s40263-018-0564-y

Lehmann, B. D., Bauer, J. A., Chen, X., Sanders, M. E., Chakravarthy, A. B., Shyr, Y., & Pietenpol, J. A. (2011). Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. The Journal of clinical investigation, 121(7), 2750–2767. https://doi.org/10.1172/JCI45014

Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011

Li, L., Liu, J., Delohery, T., Zhang, D., Arendt, C., & Jones, C. (2013). The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. Journal of neuroimmunology, 265(1-2), 82–90. https://doi.org/10.1016/j.jneuroim.2013.10.003

Li, R., Tian, F., Qi, Y., Ma, L., Zhou, T., Li, Y., Hui, T., Zhang, L., Wang, S., & Song, Z. (2019). Pegylated liposomal doxorubicin plus cyclophosphamide followed by docetaxel as neoadjuvant chemotherapy in locally advanced breast cancer (registration number: ChiCTR1900023052). Scientific reports, 9(1), 18135. https://doi.org/10.1038/s41598-019-54387-5

Lima, S. M., Kehm, R. D., & Terry, M. B. (2021). Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. EClinicalMedicine, 38, 100985. https://doi.org/10.1016/j.eclinm.2021.100985

Lopez-Tarruella, S., & Schiff, R. (2007). The dynamics of estrogen receptor status in breast cancer: re-shaping the paradigm. Clinical cancer research : an official journal of the American Association for Cancer Research, 13(23), 6921–6925. https://doi.org/10.1158/1078-0432.CCR-07-1399

Lukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanislawek, A. (2021). Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers, 13(17), 4287. https://doi.org/10.3390/cancers13174287

Mahtab, A., Rabbani, S. A., Neupane, Y. R., Pandey, S., Ahmad, A., Khan, M. A., Gupta, N., Madaan, A., Jaggi, M., Sandal, N., Rawat, H., Aqil, M., & Talegaonkar, S. (2020). Facile functionalization of Teriflunomide-loaded nanoliposomes with Chondroitin sulphate for the treatment of Rheumatoid arthritis. Carbohydrate polymers, 250, 116926. https://doi.org/10.1016/j.carbpol.2020.116926

Maira, S. M., Pecchi, S., Huang, A., Burger, M., Knapp, M., Sterker, D., Schnell, C., Guthy, D., Nagel, T., Wiesmann, M., Brachmann, S., Fritsch, C., Dorsch, M., Chène, P., Shoemaker, K., De Pover, A., Menezes, D., Martiny-Baron, G., Fabbro, D., Wilson, C. J., … Voliva, C. F. (2012). Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Molecular cancer therapeutics, 11(2), 317–328. https://doi.org/10.1158/1535-7163.MCT-11-0474

Makki J. (2015). Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clinical medicine insights. Pathology, 8, 23–31. https://doi.org/10.4137/CPath.S31563

Malla, B., Cotten, S., Ulshoefer, R., Paul, F., Hauser, A. E., Niesner, R., Bros, H., & Infante-Duarte, C. (2020). Teriflunomide preserves peripheral nerve mitochondria from oxidative stress-mediated alterations. Therapeutic advances in chronic disease, 11, 2040622320944773. https://doi.org/10.1177/2040622320944773

Manning, B. D., & Toker, A. (2017). AKT/PKB Signaling: Navigating the Network. Cell, 169(3), 381–405. https://doi.org/10.1016/j.cell.2017.04.001

Marchetti, C., Palaia, I., Giorgini, M., De Medici, C., Iadarola, R., Vertechy, L., Domenici, L., Di Donato, V., Tomao, F., Muzii, L., & Benedetti Panici, P. (2014). Targeted drug delivery via folate receptors in recurrent ovarian cancer: a review. OncoTargets and therapy, 7, 1223–1236. https://doi.org/10.2147/OTT.S40947

Matallanas, D., Birtwistle, M., Romano, D., Zebisch, A., Rauch, J., von Kriegsheim, A., & Kolch, W. (2011). Raf family kinases: old dogs have learned new tricks. Genes & cancer, 2(3), 232–260. https://doi.org/10.1177/1947601911407323

McCain J. (2013). The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. P & T : a peer-reviewed journal for formulary management, 38(2), 96–108.

McCart Reed, A. E., Kalinowski, L., Simpson, P. T., & Lakhani, S. R. (2021). Invasive lobular carcinoma of the breast: the increasing importance of this special subtype. Breast cancer research : BCR, 23(1), 6. https://doi.org/10.1186/s13058-020-01384-6

McCubrey, J. A., Steelman, L. S., Bertrand, F. E., Davis, N. M., Sokolosky, M., Abrams, S. L., Montalto, G., D'Assoro, A. B., Libra, M., Nicoletti, F., Maestro, R., Basecke, J., Rakus, D., Gizak, A., Demidenko, Z. N., Cocco, L., Martelli, A. M., & Cervello, M. (2014). GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget, 5(10), 2881–2911. https://doi.org/10.18632/oncotarget.2037

Menon, G., Alkabban, F. M., & Ferguson, T. (2024). Breast Cancer. In StatPearls. StatPearls Publishing.

Menta, A., Fouad, T. M., Lucci, A., Le-Petross, H., Stauder, M. C., Woodward, W. A., Ueno, N. T., & Lim, B. (2018). Inflammatory Breast Cancer: What to Know About This Unique, Aggressive Breast Cancer. The Surgical clinics of North America, 98(4), 787–800. https://doi.org/10.1016/j.suc.2018.03.009

Migliaccio, A., Di Domenico, M., Castoria, G., de Falco, A., Bontempo, P., Nola, E., & Auricchio, F. (1996). Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. The EMBO journal, 15(6), 1292–1300.

Mirzapoiazova, T., Tseng, L., Mambetsariev, B., Li, H., Lou, C. H., Pozhitkov, A., Ramisetty, S. K., Nam, S., Mambetsariev, I., Armstrong, B., Malhotra, J., Arvanitis, L., Nasser, M. W., Batra, S. K., Rosen, S. T., Wheeler, D. L., Singhal, S. S., Kulkarni, P., & Salgia, R. (2024). Teriflunomide/leflunomide synergize with chemotherapeutics by decreasing mitochondrial fragmentation via DRP1 in SCLC. iScience, 27(6), 110132. https://doi.org/10.1016/j.isci.2024.110132

Morel, A. P., Ginestier, C., Pommier, R. M., Cabaud, O., Ruiz, E., Wicinski, J., Devouassoux-Shisheboran, M., Combaret, V., Finetti, P., Chassot, C., Pinatel, C., Fauvet, F., Saintigny, P., Thomas, E., Moyret-Lalle, C., Lachuer, J., Despras, E., Jauffret, J. L., Bertucci, F., Guitton, J., … Puisieux, A. (2017). A stemness-related ZEB1-MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nature medicine, 23(5), 568–578. https://doi.org/10.1038/nm.4323

Myers, M. P., Pass, I., Batty, I. H., Van der Kaay, J., Stolarov, J. P., Hemmings, B. A., Wigler, M. H., Downes, C. P., & Tonks, N. K. (1998). The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13513–13518. https://doi.org/10.1073/pnas.95.23.13513

Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013 Oct 25;5[4]:542-69

Negi, L. M., Jaggi, M., Joshi, V., Ronodip, K., & Talegaonkar, S. (2015). Hyaluronan coated liposomes as the intravenous platform for delivery of imatinib mesylate in MDR colon cancer. International journal of biological macromolecules, 73, 222–235. https://doi.org/10.1016/j.ijbiomac.2014.11.026

Newman, L. A., Reis-Filho, J. S., Morrow, M., Carey, L. A., & King, T. A. (2015). The 2014 Society of Surgical Oncology Susan G. Komen for the Cure Symposium: triple-negative breast cancer. Annals of surgical oncology, 22(3), 874–882. https://doi.org/10.1245/s10434-014-4279-0

O'Connor, P., Wolinsky, J. S., Confavreux, C., Comi, G., Kappos, L., Olsson, T. P., Benzerdjeb, H., Truffinet, P., Wang, L., Miller, A., Freedman, M. S., & TEMSO Trial Group (2011). Randomized trial of oral teriflunomide for relapsing multiple sclerosis. The New England journal of medicine, 365(14), 1293–1303. https://doi.org/10.1056/NEJMoa1014656

Oh, J., & O'Connor, P. W. (2013). Safety, tolerability, and efficacy of oral therapies for relapsing-remitting multiple sclerosis. CNS drugs, 27(8), 591–609. https://doi.org/10.1007/s40263-013-0080-z

Osborne, C. K., & Schiff, R. (2011). Mechanisms of endocrine resistance in breast cancer. Annual review of medicine, 62, 233–247. https://doi.org/10.1146/annurev-med-070909-182917

Pareja, F., Geyer, F. C., Marchiò, C., Burke, K. A., Weigelt, B., & Reis-Filho, J. S. (2016). Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ breast cancer, 2, 16036. https://doi.org/10.1038/npjbcancer.2016.36

Park J. W. (2002). Liposome-based drug delivery in breast cancer treatment. Breast cancer research : BCR, 4(3), 95–99. https://doi.org/10.1186/bcr432

Patnaik, A., Haluska, P., Tolcher, A. W., Erlichman, C., Papadopoulos, K. P., Lensing, J. L., Beeram, M., Molina, J. R., Rasco, D. W., Arcos, R. R., Kelly, C. S., Wijayawardana, S. R., Zhang, X., Stancato, L. F., Bell, R., Shi, P., Kulanthaivel, P., Pitou, C., Mulle, L. B., Farrington, D. L., … Goetz, M. P. (2016). A First-in-Human Phase I Study of the Oral p38 MAPK Inhibitor, Ralimetinib (LY2228820 Dimesylate), in Patients with Advanced Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(5), 1095–1102. https://doi.org/10.1158/1078-0432.CCR-15-1718

Pérez-Tenorio, G., Stål, O., & Southeast Sweden Breast Cancer Group (2002). Activation of AKT/PKB in breast cancer predicts a worse outcome among endocrine treated patients. British journal of cancer, 86(4), 540–545. https://doi.org/10.1038/sj.bjc.6600126

Perou, C. M., Sørlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., Pollack, J. R., Ross, D. T., Johnsen, H., Akslen, L. A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S. X., Lønning, P. E., Børresen-Dale, A. L., Brown, P. O., & Botstein, D. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. https://doi.org/10.1038/35021093

Pircher, M., Mlineritsch, B., Fridrik, M. A., Dittrich, C., Lang, A., Petru, E., Weltermann, A., Thaler, J., Hufnagl, C., Gampenrieder, S. P., Rinnerthaler, G., Ressler, S., Ulmer, H., & Greil, R. (2015). Lapatinib-plus-pegylated liposomal doxorubicin in advanced HER2-positive breast cancer following trastuzumab: a phase II trial. Anticancer research, 35(1), 517–521.

Plasilova, M. L., Hayse, B., Killelea, B. K., Horowitz, N. R., Chagpar, A. B., & Lannin, D. R. (2016). Features of triple-negative breast cancer: Analysis of 38,813 cases from the national cancer database. Medicine, 95(35), e4614. https://doi.org/10.1097/MD.0000000000004614

Plotnikov, A., Flores, K., Maik-Rachline, G., Zehorai, E., Kapri-Pardes, E., Berti, D. A., Hanoch, T., Besser, M. J., & Seger, R. (2015). The nuclear translocation of ERK1/2 as an anticancer target. Nature communications, 6, 6685. https://doi.org/10.1038/ncomms7685

Posevitz, V., Chudyka, D., Schneider-Hohendorf, T., Schwab, N., Kurth, F., & Wiendl, H. (2012). Teriflunomide selectively suppresses antigen induced T-cell expansion in a TCR avidity dependent fashion. Multiple Sclerosis Journal, 18, P1107.

Pothuri, B., Brodsky, A. L., Sparano, J. A., Blank, S. V., Kim, M., Hershman, D. L., Tiersten, A., Kiesel, B. F., Beumer, J. H., Liebes, L., & Muggia, F. (2020). Phase I and pharmacokinetic study of veliparib, a PARP inhibitor, and pegylated liposomal doxorubicin (PLD) in recurrent gynecologic cancer and triple negative breast cancer with long-term follow-up. Cancer chemotherapy and pharmacology, 85(4), 741–751. https://doi.org/10.1007/s00280-020-04030-2

Practice Bulletin Number 179: Breast Cancer Risk Assessment and Screening in Average-Risk Women. (2017). Obstetrics and gynecology, 130(1), e1–e16. https://doi.org/10.1097/AOG.0000000000002158

Prat, A., Cheang, M. C., Martín, M., Parker, J. S., Carrasco, E., Caballero, R., Tyldesley, S., Gelmon, K., Bernard, P. S., Nielsen, T. O., & Perou, C. M. (2013). Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 31(2), 203–209. https://doi.org/10.1200/JCO.2012.43.4134

Puisieux, A., Pommier, R. M., Morel, A. P., & Lavial, F. (2018). Cellular Pliancy and the Multistep Process of Tumorigenesis. Cancer cell, 33(2), 164–172. https://doi.org/10.1016/j.ccell.2018.01.007

Raj-Kumar, P. K., Liu, J., Hooke, J. A., Kovatich, A. J., Kvecher, L., Shriver, C. D., & Hu, H. (2019). PCA-PAM50 improves consistency between breast cancer intrinsic and clinical subtyping reclassifying a subset of luminal A tumors as luminal B. Scientific reports, 9(1), 7956. https://doi.org/10.1038/s41598-019-44339-4

Rau, K. M., Lin, Y. C., Chen, Y. Y., Chen, J. S., Lee, K. D., Wang, C. H., & Chang, H. K. (2015). Pegylated liposomal doxorubicin (Lipo-Dox®) combined with cyclophosphamide and 5-fluorouracil is effective and safe as salvage chemotherapy in taxane-treated metastatic breast cancer: an open-label, multi-center, non-comparative phase II study. BMC cancer, 15, 423. https://doi.org/10.1186/s12885-015-1433-4

Ringshausen, I., Oelsner, M., Bogner, C., Peschel, C., & Decker, T. (2008). The immunomodulatory drug Leflunomide inhibits cell cycle progression of B-CLL cells. Leukemia, 22(3), 635–638. https://doi.org/10.1038/sj.leu.2404922

Rocca, A., Braga, L., Volpe, M. C., Maiocchi, S., & Generali, D. (2022). The Predictive and Prognostic Role of RAS-RAF-MEK-ERK Pathway Alterations in Breast Cancer: Revision of the Literature and Comparison with the Analysis of Cancer Genomic Datasets. Cancers, 14(21), 5306. https://doi.org/10.3390/cancers14215306

Roux, P., Knight, S., Cohen, M., Classe, J. M., Mazouni, C., Chauvet, M. P., Reyal, F., Colombo, P. E., Jouve, E., Chopin, N., Daraï, E., Coutant, C., Lambaudie, E., & Houvenaeghel, G. (2019). Tubular and mucinous breast cancer: results of a cohort of 917 patients. Tumori, 105(1), 55–62. https://doi.org/10.1177/0300891618811282

Rückemann, K., Fairbanks, L. D., Carrey, E. A., Hawrylowicz, C. M., Richards, D. F., Kirschbaum, B., & Simmonds, H. A. (1998). Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. The Journal of biological chemistry, 273(34), 21682–21691. https://doi.org/10.1074/jbc.273.34.21682

Senior, J., Delgado, C., Fisher, D., Tilcock, C., & Gregoriadis, G. (1991). Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochimica et biophysica acta, 1062(1), 77–82. https://doi.org/10.1016/0005-2736(91)90337-8

Shavi, G. V., Sreenivasa Reddy, M., Raghavendra, R., Nayak, U. Y., Kumar, A. R., Deshpande, P. B., Udupa, N., Behl, G., Dave, V., & Kushwaha, K. (2016). PEGylated liposomes of anastrozole for long-term treatment of breast cancer: in vitro and in vivo evaluation. Journal of liposome research, 26(1), 28–46. https://doi.org/10.3109/08982104.2015.1029493

Shou, J., Massarweh, S., Osborne, C. K., Wakeling, A. E., Ali, S., Weiss, H., & Schiff, R. (2004). Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. Journal of the National Cancer Institute, 96(12), 926–935. https://doi.org/10.1093/jnci/djh166

Singh, A., Neupane, Y. R., Shafi, S., Mangla, B., & Kohli, K. (2020). PEGylated liposomes as an emerging therapeutic platform for oral nanomedicine in cancer therapy: In vitro and in vivo assessment. Journal of molecular liquids, 303, 112649.

Sivadasan, D., Sultan, M. H., Madkhali, O. A., Alsabei, S. H., & Alessa, A. A. (2022). Stealth Liposomes (PEGylated) Containing an Anticancer Drug Camptothecin: In Vitro Characterization and In Vivo Pharmacokinetic and Tissue Distribution Study. Molecules (Basel, Switzerland), 27(3), 1086. https://doi.org/10.3390/molecules27031086

Smorenburg, C. H., de Groot, S. M., van Leeuwen-Stok, A. E., Hamaker, M. E., Wymenga, A. N., de Graaf, H., de Jongh, F. E., Braun, J. J., Los, M., Maartense, E., van Tinteren, H., Nortier, J. W. R., & Seynaeve, C. (2014). A randomized phase III study comparing pegylated liposomal doxorubicin with capecitabine as first-line chemotherapy in elderly patients with metastatic breast cancer: results of the OMEGA study of the Dutch Breast Cancer Research Group BOOG. Annals of oncology : official journal of the European Society for Medical Oncology, 25(3), 599–605. https://doi.org/10.1093/annonc/mdt588

Somnay, Y., Chen, H., & Kunnimalaiyaan, M. (2013). Synergistic effect of pasireotide and teriflunomide in carcinoids in vitro. Neuroendocrinology, 97(2), 183–192. https://doi.org/10.1159/000341810

Sternlicht M. D. (2006). Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis. Breast cancer research : BCR, 8(1), 201. https://doi.org/10.1186/bcr1368

Stiltner, J., McCandless, K., & Zahid, M. (2021). Cell-Penetrating Peptides: Applications in Tumor Diagnosis and Therapeutics. Pharmaceutics, 13(6), 890. https://doi.org/10.3390/pharmaceutics13060890

Suga, T., Fuchigami, Y., Hagimori, M., & Kawakami, S. (2017). Ligand peptide-grafted PEGylated liposomes using HER2 targeted peptide-lipid derivatives for targeted delivery in breast cancer cells: The effect of serine-glycine repeated peptides as a spacer. International journal of pharmaceutics, 521(1-2), 361–364. https://doi.org/10.1016/j.ijpharm.2017.02.041

Sykes D. B. (2018). The emergence of dihydroorotate dehydrogenase (DHODH) as a therapeutic target in acute myeloid leukemia. Expert opinion on therapeutic targets, 22(11), 893–898. https://doi.org/10.1080/14728222.2018.1536748

Tallantyre, E., Evangelou, N., & Constantinescu, C. S. (2008). Spotlight on teriflunomide. International MS journal, 15(2), 62–68.

Tenchov, R., Sasso, J. M., & Zhou, Q. A. (2023). PEGylated Lipid Nanoparticle Formulations: Immunological Safety and Efficiency Perspective. Bioconjugate chemistry, 34(6), 941–960. https://doi.org/10.1021/acs.bioconjchem.3c00174

Thomas, H. V., Key, T. J., Allen, D. S., Moore, J. W., Dowsett, M., Fentiman, I. S., & Wang, D. Y. (1997). A prospective study of endogenous serum hormone concentrations and breast cancer risk in post-menopausal women on the island of Guernsey. British journal of cancer, 76(3), 401–405. https://doi.org/10.1038/bjc.1997.398

Thomas, P., Pang, Y., Filardo, E. J., & Dong, J. (2005). Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology, 146(2), 624–632. https://doi.org/10.1210/en.2004-1064

Thorpe, L. M., Yuzugullu, H., & Zhao, J. J. (2015). PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nature reviews. Cancer, 15(1), 7–24. https://doi.org/10.1038/nrc3860

Tokunaga, E., Kimura, Y., Mashino, K., Oki, E., Kataoka, A., Ohno, S., Morita, M., Kakeji, Y., Baba, H., & Maehara, Y. (2006). Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast cancer (Tokyo, Japan), 13(2), 137–144. https://doi.org/10.2325/jbcs.13.137

Toniolo, P. G., Levitz, M., Zeleniuch-Jacquotte, A., Banerjee, S., Koenig, K. L., Shore, R. E., Strax, P., & Pasternack, B. S. (1995). A prospective study of endogenous estrogens and breast cancer in postmenopausal women. Journal of the National Cancer Institute, 87(3), 190–197. https://doi.org/10.1093/jnci/87.3.190

Torchilin V. P. (1998). Polymer-coated long-circulating microparticulate pharmaceuticals. Journal of microencapsulation, 15(1), 1–19. https://doi.org/10.3109/02652049809006831

Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M., & Jemal, A. (2017). Global Cancer in Women: Burden and Trends. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 26(4), 444–457. https://doi.org/10.1158/1055-9965.EPI-16-0858

Torres-Flores, G., Gonzalez-Horta, A., Vega-Cantu, Y. I., Rodriguez, C., & Rodriguez-Garcia, A. (2020). Preparation and Characterization of Liposomal Everolimus by Thin-Film Hydration Technique. Advances in Polymer Technology, 2020(1), 5462949.

Trüeb R. M. (2009). Chemotherapy-induced alopecia. Seminars in cutaneous medicine and surgery, 28(1), 11–14. https://doi.org/10.1016/j.sder.2008.12.001

Türker, S., Erdogan, S., Ozer, A. Y., Ergün, E. L., Tuncel, M., Bilgili, H., & Deveci, S. (2005). Scintigraphic imaging of radiolabelled drug delivery systems in rabbits with arthritis. International journal of pharmaceutics, 296(1-2), 34–43. https://doi.org/10.1016/j.ijpharm.2005.02.017

Vanza, J., Jani, P., Pandya, N., & Tandel, H. (2018). Formulation and statistical optimization of intravenous temozolomide-loaded PEGylated liposomes to treat glioblastoma multiforme by three-level factorial design. Drug development and industrial pharmacy, 44(6), 923–933. https://doi.org/10.1080/03639045.2017.1421661

Vermersch, P., Czlonkowska, A., Grimaldi, L. M., Confavreux, C., Comi, G., Kappos, L., Olsson, T. P., Benamor, M., Bauer, D., Truffinet, P., Church, M., Miller, A. E., Wolinsky, J. S., Freedman, M. S., O'Connor, P., & TENERE Trial Group (2014). Teriflunomide versus subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis: a randomised, controlled phase 3 trial. Multiple sclerosis (Houndmills, Basingstoke, England), 20(6), 705–716. https://doi.org/10.1177/1352458513507821

Vo, U., Vajpai, N., Flavell, L., Bobby, R., Breeze, A. L., Embrey, K. J., & Golovanov, A. P. (2016). Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. The Journal of biological chemistry, 291(4), 1703–1718. https://doi.org/10.1074/jbc.M115.691238

Wang, D. Y., Jiang, Z., Ben-David, Y., Woodgett, J. R., & Zacksenhaus, E. (2019). Molecular stratification within triple-negative breast cancer subtypes. Scientific reports, 9(1), 19107. https://doi.org/10.1038/s41598-019-55710-w

Wang, Z., Zhang, X., Shen, P., Loggie, B. W., Chang, Y., & Deuel, T. F. (2006). A variant of estrogen receptor-{alpha}, hER-{alpha}36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9063–9068. https://doi.org/10.1073/pnas.0603339103

Watkins E. J. (2019). Overview of breast cancer. JAAPA : official journal of the American Academy of Physician Assistants, 32(10), 13–17. https://doi.org/10.1097/01.JAA.0000580524.95733.3d

Waziri, A., Bharti, C., Aslam, M., Jamil, P., Mirza, M., Javed, M. N., ... & Alam, M. S. (2022). Probiotics for the chemoprotective role against the toxic effect of cancer chemotherapy. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 22(4), 654-667.

Weigelt, B., Geyer, F. C., & Reis-Filho, J. S. (2010). Histological types of breast cancer: how special are they?. Molecular oncology, 4(3), 192–208. https://doi.org/10.1016/j.molonc.2010.04.004

Wetterskog, D., Lopez-Garcia, M. A., Lambros, M. B., A'Hern, R., Geyer, F. C., Milanezi, F., Cabral, M. C., Natrajan, R., Gauthier, A., Shiu, K. K., Orr, N., Shousha, S., Gatalica, Z., Mackay, A., Palacios, J., Reis-Filho, J. S., & Weigelt, B. (2012). Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. The Journal of pathology, 226(1), 84–96. https://doi.org/10.1002/path.2974

White, R. M., Cech, J., Ratanasirintrawoot, S., Lin, C. Y., Rahl, P. B., Burke, C. J., Langdon, E., Tomlinson, M. L., Mosher, J., Kaufman, C., Chen, F., Long, H. K., Kramer, M., Datta, S., Neuberg, D., Granter, S., Young, R. A., Morrison, S., Wheeler, G. N., & Zon, L. I. (2011). DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature, 471(7339), 518–522. https://doi.org/10.1038/nature09882

Wiese, M. D., Rowland, A., Polasek, T. M., Sorich, M. J., & O'Doherty, C. (2013). Pharmacokinetic evaluation of teriflunomide for the treatment of multiple sclerosis. Expert opinion on drug metabolism & toxicology, 9(8), 1025–1035. https://doi.org/10.1517/17425255.2013.800483

Wolf, A., Eulenfeld, R., Gäbler, K., Rolvering, C., Haan, S., Behrmann, I., Denecke, B., Haan, C., & Schaper, F. (2013). JAK2-V617F-induced MAPK activity is regulated by PI3K and acts synergistically with PI3K on the proliferation of JAK2-V617F-positive cells. JAK-STAT, 2(3), e24574. https://doi.org/10.4161/jkst.24574

Wu, H. L., Gong, Y., Ji, P., Xie, Y. F., Jiang, Y. Z., & Liu, G. Y. (2022). Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy. Journal of hematology & oncology, 15(1), 45. https://doi.org/10.1186/s13045-022-01263-x

Xu, C., Wei, Q., Guo, J., Zhou, J. C., Mei, J., Jiang, Z. N., Shen, J. G., & Wang, L. B. (2015). FOXA1 Expression Significantly Predict Response to Chemotherapy in Estrogen Receptor-Positive Breast Cancer Patients. Annals of surgical oncology, 22(6), 2034–2039. https://doi.org/10.1245/s10434-014-4313-2

Xu, X., Shen, J., Mall, J. W., Myers, J. A., Huang, W., Blinder, L., Saclarides, T. J., Williams, J. W., & Chong, A. S. (1999). In vitro and in vivo antitumor activity of a novel immunomodulatory drug, leflunomide: mechanisms of action. Biochemical pharmacology, 58(9), 1405–1413. https://doi.org/10.1016/s0006-2952(99)00228-2

Yao, Y., Zhou, Y., Liu, L., Xu, Y., Chen, Q., Wang, Y., Wu, S., Deng, Y., Zhang, J., & Shao, A. (2020). Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Frontiers in molecular biosciences, 7, 193. https://doi.org/10.3389/fmolb.2020.00193

Yuan, T. L., & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene, 27(41), 5497–5510. https://doi.org/10.1038/onc.2008.245

Zhang, Y., Wang, Y., Li, X., Nie, D., Liu, C., & Gan, Y. (2022). Ligand-modified nanocarriers for oral drug delivery: Challenges, rational design, and applications. Journal of controlled release : official journal of the Controlled Release Society, 352, 813–832. https://doi.org/10.1016/j.jconrel.2022.11.010

Zhang, Z., Ma, L., & Luo, J. (2021). Chondroitin Sulfate-Modified Liposomes for Targeted Co-Delivery of Doxorubicin and Retinoic Acid to Suppress Breast Cancer Lung Metastasis. Pharmaceutics, 13(3), 406. https://doi.org/10.3390/pharmaceutics13030406

Zhao, Z., Ukidve, A., Kim, J., & Mitragotri, S. (2020). Targeting Strategies for Tissue-Specific Drug Delivery. Cell, 181(1), 151–167. https://doi.org/10.1016/j.cell.2020.02.001

Zivadinovic, D., & Watson, C. S. (2005). Membrane estrogen receptor-alpha levels predict estrogen-induced ERK1/2 activation in MCF-7 cells. Breast cancer research : BCR, 7(1), R130–R144. https://doi.org/10.1186/bcr959

Zorov, D. B., Vorobjev, I. A., Popkov, V. A., Babenko, V. A., Zorova, L. D., Pevzner, I. B., Silachev, D. N., Zorov, S. D., Andrianova, N. V., & Plotnikov, E. Y. (2019). Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells, 8(2), 175. https://doi.org/10.3390/cells8020175

Zwicke, G. L., Mansoori, G. A., & Jeffery, C. J. (2012). Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano reviews, 3, 10.3402/nano.v3i0.18496. https://doi.org/10.3402/nano.v3i0.18496

Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
122
View
0
Share