Modern Dental Prothesis and Implantology: Biological Integration, Material Innovations, and Clinical Strategies in Tooth Loss Rehabilitation
Muteb Abdulaziz Abdullah Al Askar 1, Saud Ahmed Ali Mubarki 1, Fayez bin Hindi A Alanazi 1, Ghadyan Salem A Sammari 1, Waleed Abdullah Alghamdi 1, Muteb Mohammed Mesfer Alwadai 1, Sultan Abdullah Alqahtani 1, Ahmed Ali Salami 1, Salem Ibrahim Almishkhas 1, Omar Mohammed Sulaimani 1, Shadi Safwat Alkhadra 1, Mohsen Majed Mohsen Aldajani 1, Abdullah Saud Alotaibi 1, Eidan Abdullah Saleh Aleidan 1, Majed Nasser Mohammad Maashi 1*
Integrative Biomedical Research (Journal of Angiotherapy) 8(5) 1-11 https://doi.org/10.25163/angiotherapy.8510304
Submitted: 05 March 2024 Revised: 14 May 2024 Published: 15 May 2024
Abstract
Background: Tooth loss remains prevalent due to trauma, disease, and hereditary conditions, negatively affecting oral function, aesthetics, and psychological health. Traditional prostheses impose limitations related to comfort, function, and durability. Aim: To analyze the evolution, indications, techniques, materials, and limitations of dental implants as a superior alternative for restoring missing teeth. Methods: This narrative review compiles historical milestones, current practices, material developments, and surgical protocols in implantology. It highlights clinical considerations, osseointegration mechanisms, and patient-specific treatment planning. Results: Titanium-based endosseous implants have shown high success rates exceeding 95% over five years. Implant surface treatments such as plasma-spraying, acid etching, and anodization improve osseointegration. Modern placement methods, including immediate or delayed loading—are tailored to bone density, infection status, and anatomical constraints. Bone grafting and synthetic substitutes like β-TCP have expanded eligibility for patients with severe bone resorption. Conclusion: Dental implants now offer stable, predictable, and long-lasting solutions for a broad spectrum of edentulous conditions. Innovations in surface treatment and surgical protocols continue to optimize outcomes. Patient selection, oral hygiene, and medical comorbidities must be carefully evaluated to mitigate complications like peri-implantitis and mechanical failure. Implantology is a clinically effective and biologically integrated solution that now defines standard care in restorative dentistry.
Keywords: Dental implants, osseointegration, titanium, tooth loss, implant surface treatment, bone grafting, peri-implantitis, implant placement, prosthetic rehabilitation
References
Adell, R., Lekholm, U., Rockler, B., & Brånemark, P. I. (1981). A 15-year study of osseo-integrated implants in the treatment of the edentulous jaw. International Journal of Oral Surgery, 10(6), 387–416.
Albrektsson, T., & Wennerberg, A. (2005). The impact of oral implants—past and future, 1966–2042. Journal of the Canadian Dental Association, 71(5), 327.
Albrektsson, T., Brånemark, P.-I., Hansson, H.-A., & Lindström, J. (1981). Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthopaedica, 52(2), 155–170.
Augustin, G., Davila, S., Udiljak, T., Vedrina, D. S., & Bagatin, D. (2009). Determination of spatial distribution of increase in bone temperature during drilling by infrared thermography: Preliminary report. Archives of Orthopaedic and Trauma Surgery, 129(5), 703–709.
Bain, C. A., & Moy, P. K. (1993). The association between the failure of dental implants and cigarette smoking. International Journal of Oral & Maxillofacial Implants, 8(6), 609–615.
Bastone, E. B., Freer, T. J., & McNamara, J. R. (2000). Epidemiology of dental trauma: A review of the literature. Australian Dental Journal, 45(1), 2–9.
Becker, W., Becker, B. E., Ricci, A., Bahat, O., Rosenberg, E., Rose, L. F., et al. (2000). A prospective multicenter clinical trial comparing one- and two-stage titanium screw-shaped fixtures with one-stage plasma-sprayed solid-screw fixtures. Clinical Implant Dentistry and Related Research, 2(3), 159–165.
Bodic, F., Hamel, L., Lerouxel, E., Baslé, M. F., & Chappard, D. (2005). Bone loss and teeth. Joint Bone Spine, 72(3), 215–221.
Brånemark, P. I., Svensson, B., & Van Steenberghe, D. (1995). Ten-year survival rates of fixed prostheses on four or six implants ad modum Brånemark in full edentulism. Clinical Oral Implants Research, 6(4), 227–231.
Brånemark, P. I., Zarb, G. A., & Albrektsson, T. (1985). Tissue integrated prostheses. Quintessence.
Browaeys, H., Bouvry, P., & De Bruyn, H. (2007). A literature review on biomaterials in sinus augmentation procedures. Clinical Implant Dentistry and Related Research, 9(3), 166–177.
Browne, M., & Gregson, P. (2000). Effect of mechanical surface pretreatment on metal ion release. Biomaterials, 21(4), 385–392.
Chappard, D., Aguado, E., Huré, G., Grizon, F., & Baslé, M. F. (1999). The early remodeling phases around titanium implants: A histomorphometric assessment of bone quality in a 3- and 6-month study in sheep. International Journal of Oral & Maxillofacial Implants, 14(2), 189–196.
Chappard, D., Guillaume, B., Mallet, R., Pascaretti-Grizon, F., Baslé, M. F., & Libouban, H. (2010). Sinus lift augmentation and beta-TCP: A microCT and histologic analysis on human bone biopsies. Micron, 41(4), 321–326.
Chiapasco, M., Gatti, C., Rossi, E., & Haeflige, W. (1997). Implant-retained mandibular overdentures with immediate loading. Clinical Oral Implants Research, 8(1), 48–57.
Cochran, D., Schenk, R., Lussi, A., Higginbottom, F., & Buser, D. (1998). Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible. Journal of Biomedical Materials Research, 40(1), 1–11.
Crubezy, E., Murail, P., Girard, L., & Bernadou, J. P. (1998). False teeth of the Roman world. Nature, 391(6662), 29.
De Coster, P. J., Marks, L. A., Martens, L. C., & Huysseune, A. (2009). Dental agenesis: Genetic and clinical perspectives. Journal of Oral Pathology & Medicine, 38(1), 1–17.
Degasne, I., Baslé, M. F., Demais, V., Huré, G., Lesourd, M., Grolleau, B., et al. (1999). Effects of roughness, fibronectin and vitronectin on attachment, spreading, and proliferation of human osteoblast-like cells (Saos-2) on titanium surfaces. Calcified Tissue International, 64(6), 499–507.
Ericsson, I., Nilson, H., Lindh, T., Nilner, K., & Randow, K. (2000). Immediate functional loading of Brånemark single tooth implants. Clinical Oral Implants Research, 11(1), 26–33.
Grizon, F., Aguado, E., Huré, G., Baslé, M. F., & Chappard, D. (2002). Enhanced bone integration of implants with increased surface roughness: A long-term study in the sheep. Journal of Dentistry, 30(5–6), 195–203.
Guillaume, B. (2011). Les implants dentaires – techniques – prescriptions – avantages. Ellebore.
Guillaume, B. (2014). Autogreffe, xénogreffe et allogreffe: utilisation clinique. In B. Guillaume, M. Audran, & D. Chappard (Eds.), Tissu osseux et biomatériaux en chirurgie dentaire (pp. 337–366). Quintessence.
Guillaume, B. (2014). Comblement sinusien. In B. Guillaume, M. Audran, & D. Chappard (Eds.), Tissu osseux et biomatériaux en chirurgie dentaire (pp. 367–379). Quintessence.
Huré, G., Donath, K., Lesourd, M., Chappard, D., & Baslé, M. F. (1996). Does titanium surface treatment influence the bone-implant interface? SEM and histomorphometry in a 6-month sheep study. International Journal of Oral & Maxillofacial Implants, 11(4), 506–511.
Karoussis, I., Salvi, G., Heitz-Mayfield, L., Brägger, U., Hämmerle, C., & Lang, N. (2009). History of treated periodontitis and smoking as risks for implant therapy. International Journal of Oral & Maxillofacial Implants, 24(1), 39–68.
Klinge, B., Hultin, M., & Berglundh, T. (2005). Peri-implantitis. Dental Clinics of North America, 49(3), 661–676.
Lang, N. P., Wilson, T. G., & Corbet, E. F. (2000). Biological complications with dental implants: Their prevention, diagnosis and treatment. Clinical Oral Implants Research, 11(1), 146–155.
Liao, H., Fartash, B., & Li, J. (1997). Stability of hydroxyapatite-coatings on titanium oral implants (IMZ). Clinical Oral Implants Research, 8(1), 68–72.
Mabilleau, G. (2014). Le titane: ses propriétés physicochimiques et ses alliages. In B. Guillaume, M. Audran, & D. Chappard (Eds.), Tissu osseux et biomatériaux en chirurgie dentaire (pp. 253–268). Quintessence.
Matthews, L. S., & Hirsch, C. (1972). Temperatures measured in human cortical bone when drilling. Journal of Bone and Joint Surgery—American Volume, 54(2), 297–308.
Mokhtari, S., Mokhtari, S., & Lotfi, A. (2012). Christ-Siemens-Touraine syndrome: A case report and review of the literature. Case Reports in Dentistry, 2012, 586418.
Moy, P. K., Medina, D., Shetty, V., & Aghaloo, T. L. (2005). Dental implant failure rates and associated risk factors. International Journal of Oral & Maxillofacial Implants, 20(4), 569–577.
Mustafa, K., Wroblewski, J., Lopez, B. S., Wennerberg, A., Hultenby, K., & Arvidson, K. (2001). Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clinical Oral Implants Research, 12(5), 515–525.
Orr, R., deBruijn, J., & Davies, J. (1991). Scanning electron microscopy of the bone interface with titanium alloy and hydroxyapatite. Cells and Materials, 2(4), 241–251.
Peltola, T., Pätsi, M., Rahiala, H., Kangasniemi, I., & Yli-Urpo, A. (1998). Calcium phosphate induction by sol-gel-derived titania coatings on titanium substrates in vitro. Journal of Biomedical Materials Research, 41(3), 504–510.
Roy, M., Bandyopadhyay, A., & Bose, S. (2011). Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surface and Coatings Technology, 205(8–9), 2785–2792.
Russe, P., Pascaretti-Grizon, F., Aguado, E., Goyenvale, E., Filmon, R., Baslé, M. F., et al. (2011). Does milling one-piece titanium dental implants induce osteocyte and osteoclast changes? Morphologie, 95(308), 51–59.
Sener, B. C., Dergin, G., Gursoy, B., Kelesoglu, E., & Slih, I. (2009). Effects of irrigation temperature on heat control in vitro at different drilling depths. Clinical Oral Implants Research, 20(3), 294–298.
Sennerby, L., Thomsen, P., & Ericson, L. E. (1991). A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. International Journal of Oral & Maxillofacial Implants, 7(1), 62–71.
Shulman, L. B., & Jensen, O. T. (1998). Sinus graft consensus conference. Introduction. International Journal of Oral & Maxillofacial Implants, 13(Suppl.), 5–6.
Smiler, D. G., Johnson, P., Lozada, J. L., Misch, C., Rosenlicht, J., Tatum, O., et al. (1992). Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dental Clinics of North America, 36(1), 151–186.
Sul, Y.-T., Johansson, C., & Albrektsson, T. (2005). Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. International Journal of Prosthodontics, 19(4), 319–328.
Tessier, P. (1982). Autogenous bone grafts taken from the calvarium for facial and cranial applications. Clinical Plastic Surgery, 9(4), 531–538.
Wennerberg, A., Albrektsson, T., Andersson, B., & Krol, J. J. (1995). A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface topographies. Clinical Oral Implants Research, 6(1), 24–30.
View Dimensions
View Altmetric
Save
Citation
View
Share