A Comprehensive Review on Cardiovascular Disease Detection, Risk Assessment, And Treatment Using A Network Pharmacology Model
Vijay Kumar Jaiswal 1*, Monika Barsagade 1, Jitendra Sinha 1
Journal of Angiotherapy 8(1) 1-9 https://doi.org/10.25163/angiotherapy.819485
Submitted: 15 November 2023 Revised: 21 January 2024 Published: 24 January 2024
Abstract
Introducing a new healthcare service based on study findings can be challenging. This review presents the outcomes of a pilot project implemented in Belgian neighborhood pharmacies, assessing the risk of diabetes and cardiovascular diseases. The service deployment followed an integrated approach using the RE-AIM (Reach Efficiency Acceptance Implantation Management) framework. The study highlights the development of a network of medications influencing cyclic guanosine monophosphate (cGMP), potentially causative for various cardiac diseases. It discusses the limited efficacy and crucial factors affecting optimal execution. It suggests exploring additional approaches like interprofessional seminars, a data-sharing system, and outreach efforts to enhance awareness of pharmacists' expanded roles. While the service is simple and practical, ensuring its effectiveness, sustainability, and broader adoption requires financial and external support.
Keywords: Cardiovascular Disease, Pharmacology Model, Risk Assessment Detection
References
Bi, S., Xu, L., Chen, S., Bu, S., & Xu, Y. (2021). Detection of herbal combinations and pharmacological mechanisms of clinical prescriptions for coronary heart disease using data mining and network pharmacology. Evidence-based Complementary and Alternative Medicine, 2021, 1-20.
https://doi.org/10.1155/2021/9234984
Bowley, G., Kugler, E., Wilkinson, R., Lawrie, A., van Eeden, F., Chico, T.J., Serbanovic-Canic, J. (2022). Zebrafish as a tractable model of human cardiovascular disease. Br. J. Pharmacol. 179(5), 900-917.
https://doi.org/10.1111/bph.15473
Ding, M., Ma, W., Wang, X., Chen, S., Zou, S., Wei, J., ... & Chang, Y. X. (2019). A network pharmacology integrated pharmacokinetics strategy for uncovering pharmacological mechanism of compounds absorbed into the blood of Dan-Lou tablet on coronary heart disease. Journal of ethnopharmacology, 242, 112055.
https://doi.org/10.1016/j.jep.2019.112055
Gong, D., Yuan, T., Wang, R., Sun, S., Dawuti, A., Wang, S., ... & Fang, L. (2023). Network pharmacology approach and experimental verification of Dan-Shen Decoction in the treatment of ischemic heart disease. Pharmaceutical biology, 61(1), 69-79.
https://doi.org/10.1080/13880209.2022.2152059
Hartleb, M., Mastalerz-Migas, A., Kowalski, P., Okopien, B., Popovic, B., Proga, K., Cywinska-Durczak, B. (2022). Healthcare practitioners' diagnostic and treatment practice patterns of nonalcoholic fatty liver disease in Poland: a cross-sectional survey. Eur J Gastroenterol Hepatol. 34(4), 426.
https://doi.org/10.1097/MEG.0000000000002288
Hill-Briggs, F., Adler, N.E., Berkowitz, S.A., Chin, M.H., Gary-Webb, T.L., Navas-Acien, A., Haire-Joshu, D. (2021). Social determinants of health and diabetes: a scientific review. Diabetes care. 44(1), 258.
https://doi.org/10.2337/dci20-0053
Jin, Y., Yin, X., Li, Z., & Xu, J. (2021). Mechanism of Baihe Decoction in the treatment of coronary heart disease based on network pharmacology and molecular docking. Ann. Palliat. Med, 10(3), 3205-3218.
https://doi.org/10.21037/apm-21-543
Joshi, A., Rienks, M., Theofilatos, K., Mayr, M. (2021). Systems biology in cardiovascular disease: a multiomics approach. Nat. Rev. Cardiol. 18(5), 313-330.
https://doi.org/10.1038/s41569-020-00477-1
Lagunin, A. A., Ivanov, S. M., Gloriozova, T. A., Pogodin, P. V., Filimonov, D. A., Kumar, S., & Goel, R. K. (2020). Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Scientific Reports, 10(1), 257.
https://doi.org/10.1038/s41598-019-57199-9
Lane, M.M., Davis, J.A., Beattie, S., Gómez-Donoso, C., Loughman, A., O'Neil, A., Rocks, T. (2021). Ultra-processed food and chronic noncommunicable diseases: a systematic review and meta-analysis of 43 observational studies. Obes. Rev. 22(3), e13146.
https://doi.org/10.1111/obr.13146
Li, L., Yang, D., Li, J., Niu, L., Chen, Y., Zhao, X., ... & Li, Y. (2020). Investigation of cardiovascular protective effect of Shenmai injection by network pharmacology and pharmacological evaluation. BMC complementary medicine and therapies, 20, 1-15.
https://doi.org/10.1186/s12906-020-02905-8
Nawaz, M.S., Shoaib, B., Ashraf, M.A. (2021). Intelligent cardiovascular disease prediction empowered with gradient descent optimization. Heliyon. 7(5).
https://doi.org/10.1016/j.heliyon.2021.e06948
Nielsen, R.E., Banner, J., Jensen, S.E. (2021). Cardiovascular disease in patients with severe mental illness. Nat. Rev. Cardiol. 18(2), 136-145.
https://doi.org/10.1038/s41569-020-00463-7
Nogueira, C.W., Barbosa, N.V., Rocha, J.B. (2021). Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol. 95, 1179-1226.
https://doi.org/10.1007/s00204-021-03003-5
Petraina, A., Nogales, C., Krahn, T., Mucke, H., Lüscher, T. F., Fischmeister, R., ... & Schmidt, H. H. (2022). Cyclic GMP modulating drugs in cardiovascular diseases: Mechanism-based network pharmacology. Cardiovascular research, 118(9), 2085-2102.
https://doi.org/10.1093/cvr/cvab240
Rath, A., Mishra, D., Panda, G., Satapathy, S.C. (2021). Heart disease detection using deep learning methods from imbalanced ECG samples. Biomed Signal Process Control. 68, 102820.
https://doi.org/10.1016/j.bspc.2021.102820
Shi, Y., Zhang, H., Huang, S., Yin, L., Wang, F., Luo, P., Huang, H. (2022). Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 7(1), 200.
https://doi.org/10.1038/s41392-022-01055-2
Shuvo, S.B., Ali, S.N., Swapnil, S.I., Al-Rakhami, M.S., Gumaei, A. (2021). CardioXNet: A novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings. IEEE Access. 9, 36955-36967.
https://doi.org/10.1109/ACCESS.2021.3063129
Subramanya, V., Zhao, D., Ouyang, P., Ying, W., Vaidya, D., Ndumele, C. E., Michos, E.D. (2021). Cyclic guanosine monophosphate and 10-year change in left ventricular mass: the Multi-Ethnic Study of Atherosclerosis (MESA). Biomark. 26(4), 309-317.
https://doi.org/10.1080/1354750X.2021.1893811
Vinothkanna, A., Prathiviraj, R., Sivakumar, T. R., Ma, Y., & Sekar, S. (2023). GC-MS and Network Pharmacology Analysis of the Ayurvedic Fermented Medicine, Chandanasava, Against Chronic Kidney and Cardiovascular Diseases. Applied Biochemistry and Biotechnology, 195(5), 2803-2828.
https://doi.org/10.1007/s12010-022-04242-7
Wang, Y., Li, F., Wang, Z., Song, X., Ren, Z., Wang, X., Zheng, K. (2023). Luteolin inhibits herpes simplex virus 1 infection by activating cyclic guanosine monophosphate-adenosine monophosphate synthase-mediated antiviral innate immunity. Phytomedicine. 120, 155020.
https://doi.org/10.1016/j.phymed.2023.155020
Wang, Y., Shi, Y., Zou, J., Zhang, X., Liang, Y., Tai, J., ... & Guo, D. (2020). Network pharmacology exploration reveals a common mechanism in the treatment of cardio-cerebrovascular disease with Salvia miltiorrhiza Burge. and Carthamus tinctorius L. BMC complementary medicine and therapies, 20(1), 1-18.
https://doi.org/10.1186/s12906-020-03026-y
Wu, X. J., Zhou, X. B., Chen, C., & Mao, W. (2019). Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology. Combinatorial chemistry & high throughput screening, 22(6), 411-420.
https://doi.org/10.2174/1386207322666190717124507
Zhang, J., Liang, R., Wang, L., & Yang, B. (2019). Effects and mechanisms of Danshen-Shanzha herb-pair for atherosclerosis treatment using network pharmacology and experimental pharmacology. Journal of ethnopharmacology, 229, 104-114.
https://doi.org/10.1016/j.jep.2018.10.004
Zhang, Y., Xin, L., Xiang, M., Shang, C., Wang, Y., Wang, Y., Lu, Y. (2022). The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed. Pharmacother. 145, 112423.
https://doi.org/10.1016/j.biopha.2021.112423
Zheng, R. F., Kader, K., Liu, D. W., Su, W. L., Xu, L., Jin, Y. Y., & Xing, J. G. (2024). A network pharmacology approach to decipher the mechanism of total flavonoids from Dracocephalum Moldavica L. in the treatment of cardiovascular diseases. BMC Complementary Medicine and Therapies, 24(1), 15.
https://doi.org/10.1186/s12906-023-04316-x
View Dimensions
View Altmetric
Save
Citation
View
Share