Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Modes of Anti-angiogenesis in Chemical Perspectives

Shan Arif a, b, Muhammad Imran a, b, Muhammad Adnan Iqbal a, b

+ Author Affiliations

Journal of Angiotherapy 2(1) 078-086 https://doi.org/10.25163/angiotherapy.12000426670119

Submitted: 06 November 2018  Revised: 03 January 2019  Published: 07 January 2019 

Abstract

Angiogenesis is a process which involves formation of new blood vessels and it involves the growth, migration and differentiation of endothelial cells that cause line inside the walls of blood vessels. This process is controlled by chemical signals in body and these signals such as vascular endothelial growth factor (VEGF), combine with receptors on the surface of normal endothelial cells and increase the growth and survival of new blood vessels. Some drugs are used to diminish the combining of VEGF with the receptors from sending the growth signals in new blood vessels. This process is called anti-angiogenesis and also called cancer growth blockers. In the current study, role of synthesized chemical pharmacores like Humulus lupulus, Hypericum perforatum, Panax ginseng, Coptis chinensis and Rheum palmatum (Varinska et al., 2010) as anti-angiogenesis has been compiled. The structure activity relationship in inhibiting the angiogenesis has also been discussed.

Key words: Anti-angiogenesis, Genistein, Epigallocatechin Gallate/ EGCG, Angiostatin.

References

Abad, M. C., Arni, R. K., Grella, D. K., Castellino, F. J., Tulinsky, A. & Geiger, J. H. (2002). The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. Journal of molecular biology 318(4): 1009-1017.
https://doi.org/10.1016/S0022-2836(02)00211-5

Adair, T. H. & Montani, J. P. Angiogenesis. San Rafael (CA): Morgan & Claypool Life Sciences; 2010. Chapter 1, Overview of Angiogenesis.

Altucci, L. & Gronemeyer, H. (2001). The promise of retinoids to fight against cancer. Nature Reviews Cancer 1(3): 181-193.
https://doi.org/10.1038/35106036
PMid:11902573

Batra, P. & Sharma, A. K. (2013). Anti-cancer potential of flavonoids: recent trends and future perspectives. 3 Biotech 3(6): 439-459.

Bergers, G. & Benjamin, L. E. (2003). Angiogenesis: tumorigenesis and the angiogenic switch. Nature Reviews Cancer 3(6): 401-410.
https://doi.org/10.1038/nrc1093
PMid:12778130

Bhagwat, S., Haytowitz, D. B. & Holden, J. M. (2014). USDA database for the flavonoid content of selected foods, Release 3.1. US Department of Agriculture: Beltsville, MD, USA.

Block, E. (2010). Garlic and other alliums: Tthe lore and the science. Royal society of Chemistry.

Block, E., Bechand, B., Gundala, S., Vattekkatte, A., Wang, K., Mousa, S. S., Godugu, K., Yalcin, M. & Mousa, S. A., (2017). Fluorinated aAnalogs of oOrganosulfur cCompounds from gGarlic (Allium sativum): Synthesis, cChemistry and aAnti-aAngiogenesis and aAntithrombotic Studies. Molecules 22(12): 2081.
https://doi.org/10.3390/molecules22122081
PMid:29182588 PMCid:PMC6149718

Cao, Y. & Cao, R. (1999). Angiogenesis inhibited by drinking tea. Nature 398: 381.
https://doi.org/10.1038/18793
PMid:10201368

Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438: 9362.
https://doi.org/10.1038/nature04478
PMid:16355210

Chen, H. X. & Cleck, J. N. (2009). Adverse effects of anticancer agents that target the VEGF pathway. Nature reviews Clinical oncology 6(8): 465-477.
https://doi.org/10.1038/nrclinonc.2009.94
PMid:19581909

Clere, N., Faure, S., Carmen Martinez, M. C. & Andriantsitohaina, R. (2011). Anticancer pProperties of fFlavonoids: rRoles in vVarious sStages of cCarcinogenesis. cCardiovascular & hHematological aAgents in MMedicinal Chemistry (Formerly 9(2): 62-77.

Condeelis, J. & Pollard, J. W. (2006). Macrophages: Obligate pPartners for tTumor cCell mMigration, iInvasion, and mMetastasis. Cell 124(2): 263-266.
https://doi.org/10.1016/j.cell.2006.01.007
PMid:16439202

Cragg, G. M. & Newman, D. J. (2005). Plants as a source of anti-cancer agents. Journal of Ethnopharmacology 100(1): 72-79.
https://doi.org/10.1016/j.jep.2005.05.011
PMid:16009521

D' Souza, S. (2014). A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms. Advances in Pharmaceutics 2014: 12.

D'Amato, R. J., Loughnan, M. S., Flynn, E. & Folkman, J. (1994). Thalidomide is an inhibitor of angiogenesis. Proceedings of the National Academy of Sciences USA 91(9): 4082-4085.
https://doi.org/10.1073/pnas.91.9.4082
PMid:7513432

Damgé, C., Michel, C., Aprahamian, M., Couvreur, P. & Devissaguet, J. P. (1990). Nanocapsules as carriers for oral peptide delivery. Journal of Controlled Release 13(2): 233-239.
https://doi.org/10.1016/0168-3659(90)90013-J

Dawidowicz, A. L., Wianowska, D. & Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT - Food Science and Technology 39(3): 308-315.
https://doi.org/10.1016/j.lwt.2005.01.005

Decker, E. A. (1998). Strategies for manipulating the prooxidative/antioxidative balance of foods to maximize oxidative stability. Trends in Food Science & Technology 9(6): 241-248.
https://doi.org/10.1016/S0924-2244(98)00045-4

Dulak, J. (2005). Nutraceuticals as anti-angiogenic agents: hopes and reality. Journal of Physiology and Pharmacology. Supplement 56(1): 51-69.

El-Nahas, A. E., Allam, A. N., Abdelmonsif, D. A. & El-Kamel, A. H. (2017). Silymarin-Loaded Eudragit Nanoparticles: Formulation, Characterization, and Hepatoprotective and Toxicity Evaluation. AAPS PharmSciTech 18(8): 3076-3086.
https://doi.org/10.1208/s12249-017-0799-9
PMid:28516410

Farina, H. G., Pomies, M., Alonso, D. F. & Gomez, D. E. (2006). Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncology reports 16(4): 885-891.
https://doi.org/10.3892/or.16.4.885

Folkman, J. (1971). Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine 285(21): 1182-1186.
https://doi.org/10.1056/NEJM197111182852108
PMid:4938153

Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology 29(6): 15-18.
https://doi.org/10.1016/S0093-7754(02)70065-1

Fujiki, H., Watanabe, T., Sueoka, E., Rawangkan, A. & Suganuma, M. (2018). Cancer pPrevention with gGreen tTea and iIts pPrincipal cConstituent, EGCG: from eEarly iInvestigations to cCurrent fFocus on hHuman cCancer sStem cCells. Molecules and Cells 41(2): 73-82.
PMid:29429153 PMCid:PMC5824026

Gao, X. & Xu, Z. (2008). Mechanisms of action of angiogenin. Acta biochimica et biophysica Sinica 40(7): 619-624.
https://doi.org/10.1111/j.1745-7270.2008.00442.x

Garbisa, S., Sartor, L., Biggin, S., Salvato, B., Benelli, R. & Albini, A. (2001). Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 91(4): 822-832.
https://doi.org/10.1002/1097-0142(20010215)91:4<822::AID-CNCR1070>3.0.CO;2-G

González-Morales, S., Pérez-Labrada, F., García-Enciso, E. L., Leija-Martínez, P., Medrano-Macías, J., Dávila-Rangel, I. E., Juárez-Maldonado, A., Rivas-Martínez, E. N., & Benavides-Mendoza, A. (2017). Selenium and sSulfur to Produce Allium Functional Crops. Molecules 22(4): 558.
https://doi.org/10.3390/molecules22040558
PMid:28358332 PMCid:PMC6154330

Gordon, M. H. (1990).The Mechanism of aAntioxidant aAction in vVitro. In Food Antioxidants, 1-18 (Ed B. J. F. Hudson). Dordrecht: Springer Netherlands.

Granese, R., Bitto, A., Polito, F., Triolo, O., Giordano, D., Santamaria, A., Squadrito, F., rsquo & D'Anna, R. (2015). Genistein reduces angiogenesis and apoptosis in women with endometrial hyperplasia. Botanics &58; Targets and Therapy 2015(1): 27-32.

Guba, M., von Breitenbuch, P., Steinbauer, M., Koehl, G., Flegel, S., Hornung, M., Bruns, C. J., Zuelke, C., Farkas, S., Anthuber, M., Jauch, K.-W. & Geissler, E. K. (2002). Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nature Medicine 8: 128.
https://doi.org/10.1038/nm0202-128
PMid:11821896

Han, Y. S., Lee, J. E., Jung, J. W. & Lee, J. S. (2009). Inhibitory effects of bevacizumab on angiogenesis and corneal neovascularization. Graefe's Archive for Clinical and Experimental Ophthalmology 247(4): 541-548.
https://doi.org/10.1007/s00417-008-0976-3
PMid:18953554

Hoffmann, S., Rockenstein, A., Ramaswamy, A., Celik, I., Wunderlich, A., Lingelbach, S., Hofbauer, L. C. & Zielke, A. (2007). Retinoic acid inhibits angiogenesis and tumor growth of thyroid cancer cells. Molecular and cellular endocrinology 264(1-2): 74-81.
https://doi.org/10.1016/j.mce.2006.10.009
PMid:17101211

Itoh, Y., Joh, T., Tanida, S., Sasaki, M., Kataoka, H., Itoh, K., Oshima, T., Ogasawara, N., Togawa, S. & Wada, T. (2005). IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine 29(6): 275-282.
https://doi.org/10.1016/j.cyto.2004.11.005

Ji, Y., Lu, X., Zhong, Q., Liu, P., An, Y., Zhang, Y., Zhang, S., Jia, R., Tesfamariam, I. G. & Kahsay, A. G. (2013). Transcriptional profiling of mouse uterus at pre-implantation stage under VEGF repression. PloS one 8(2): e57287.
https://doi.org/10.1371/journal.pone.0057287
PMid:23468957 PMCid:PMC3585347

John, J. V., Park, H., Lee, H. R., Suh, H. & Kim, I. (2015). Simultaneous extraction of phosphatidylcholine and phosphatidylethanolamine from soybean lecithin. European Journal of Lipid Science and Technology 117(10): 1647-1654.
https://doi.org/10.1002/ejlt.201400396

Kampa, M., Nifli, A.-P., Notas, G. & Castanas, E. (2007). Polyphenols and cancer cell growth. In Reviews of Physiology, Biochemistry and Pharmacology, 79-113 (Eds S. G. Amara, E. Bamberg, B. Fleischmann, T. Gudermann, S. C. Hebert, R. Jahn, W. J. Lederer, R. Lill, A. Miyajima, S. Offermanns and R. Zechner). Berlin, Heidelberg: Springer Berlin Heidelberg.
https://doi.org/10.1007/112_2006_0702

Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. (2014). Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507(7492): 323.
https://doi.org/10.1038/nature13145
PMid:24646994 PMCid:PMC4943525

Li, S. & Hu, G. F. (2012). Emerging role of angiogenin in stress response and cell survival under adverse conditions. Journal of cellular physiology 227(7): 2822-2826.
https://doi.org/10.1002/jcp.23051
PMid:22021078 PMCid:PMC3271170

Maeda, H., Bharate, G. Y. & Daruwalla, J. (2009). Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics 71(3): 409-419.
https://doi.org/10.1016/j.ejpb.2008.11.010
PMid:19070661

Mendelsohn, M. E. & Karas, R. H. (1999). The protective effects of estrogen on the cardiovascular system. New England journal of medicine 340(23): 1801-1811.
https://doi.org/10.1056/NEJM199906103402306
PMid:10362825

Mojzis, J., Varinska, L., Mojzisova, G., Kostova, I. & Mirossay, L. (2008). Antiangiogenic effects of flavonoids and chalcones. Pharmacological Research 57(4): 259-265.
https://doi.org/10.1016/j.phrs.2008.02.005
PMid:18387817

Mousa, S. A. & Davis, P. J. (2017).Angiogenesis and anti-angiogenesis strategies in cancer. In Anti-Angiogenesis Strategies in Cancer Therapeutics, 1-19: Elsevier.
https://doi.org/10.1016/B978-0-12-802576-5.00001-2

Münzel, T., Gori, T., Bruno, R. M. & Taddei, S. (2010). Is oxidative stress a therapeutic target in cardiovascular disease? European Heart Journal 31(22): 2741-2748.
https://doi.org/10.1093/eurheartj/ehq396
PMid:20974801

Pavlakovic, H., Havers, W. & Schweigerer, L. (2001). Multiple angiogenesis stimulators in a single malignancy: implications for anti-angiogenic tumour therapy. Angiogenesis 4(4): 259-262.
https://doi.org/10.1023/A:1016045012466
PMid:12197470

Pratheeshkumar, P., Son, Y.-O., Budhraja, A., Wang, X., Ding, S., Wang, L., Hitron, A., Lee, J.-C., Kim, D., Divya, S. P., Chen, G., Zhang, Z., Luo, J. & Shi, X. (2013). Luteolin iInhibits hHuman pProstate tTumor gGrowth by sSuppressing vVascular eEndothelial gGrowthf Factor rReceptor 2-mMediated aAngiogenesis. PLoS One 7(12): e52279.
https://doi.org/10.1371/journal.pone.0052279
PMid:23300633 PMCid:PMC3534088

Rashidi, B., Malekzadeh, M., Goodarzi, M., Masoudifar, A. & Mirzaei, H. (2017). Green tea and its anti-angiogenesis effects. Biomedicine & Pharmacotherapy 89: 949-956.
https://doi.org/10.1016/j.biopha.2017.01.161
PMid:28292023

Sela, U., Brill, A., Kalchenko, V., Dashevsky, O. & Hershkoviz, R. (2008). Allicin iInhibits bBlood vVessel gGrowth and dDownregulates Akt pPhosphorylation and aActin pPolymerization. Nutrition and Cancer 60(3): 412-420.
https://doi.org/10.1080/01635580701733083
PMid:18444176

Shin, M., Kadowaki, T., Iwata, J.-i., Kawakubo, T., Yamaguchi, N., Takii, R., Tsukuba, T. & Yamamoto, K. (2007).Association of cathepsin E with tumor growth arrest through angiogenesis inhibition and enhanced immune responses. In Biological Chemistry, Vol. 388, 1173.
https://doi.org/10.1515/BC.2007.154

Siddiqui, M., Hafizoh, S., Ismail, Z., Sahib, H., Helal, M. H. S. & Abdul Majid, A. M. S. (2009). Analysis of Total Proteins, Polysaccharides and Glycosaponins Contents of Orthosiphon stamineus Benth. In Spray and Freeze Dried Methanol: Water(1:1) extract and its Contribution to Cytotoxic and Antiangiogenic Activities. Pharmacognosy Research 1(5): 320-326.

Sims, J. E., March, C. J., Cosman, D., Widmer, M. B., MacDonald, H. R., McMahan, C. J., Grubin, C. E., Wignall, J. M., Jackson, J. L. & Call, S. M. (1988). cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241(4865): 585-589.
https://doi.org/10.1126/science.2969618
PMid:2969618

Spitzweg, C., Scholz, I. V., Bergert, E. R., Tindall, D. J., Young, C. Y. F., Goke, B. & Morris, J. C. (2003). Retinoic acid-induced stimulation of sodium iodide symporter expression and cytotoxicity of radioiodine in prostate cancer cells. Endocrinology 144(8): 3423-3432.
https://doi.org/10.1210/en.2002-0206
PMid:12865321

Stoclet, J.-C., Chataigneau, T., Ndiaye, M., Oak, M.-H., El Bedoui, J., Chataigneau, M. & Schini-Kerth, V. B. (2004). Vascular protection by dietary polyphenols. European Journal of Pharmacology 500(1): 299-313.
https://doi.org/10.1016/j.ejphar.2004.07.034
PMid:15464042

Suárez, Y. & Sessa, W. C. (2009). MicroRNAs as novel regulators of angiogenesis. Circulation Rresearch 104(4): 442-454.
https://doi.org/10.1161/CIRCRESAHA.108.191270
PMid:19246688 PMCid:PMC2760389

Suganuma, M., Takahashi, A., Watanabe, T., Iida, K., Matsuzaki, T., Yoshikawa, H. & Fujiki, H. (2016). Biophysical aApproach to mMechanisms of cCancer pPrevention and tTreatment with gGreen tTea cCatechins. Molecules 21(11): 1566.
https://doi.org/10.3390/molecules21111566
PMid:27869750 PMCid:PMC6273158

Tamura, M., Sebastian, S., Gurates, B., Yang, S., Fang, Z. & Bulun, S. E. (2002). Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. The Journal of Clinical Endocrinology & Metabolism 87(7): 3504-3507.
https://doi.org/10.1210/jcem.87.7.8796
PMid:12107271

Therapontos, C., Erskine, L., Gardner, E. R., Figg, W. D. & Vargesson, N. (2009). Thalidomide induces limb defects by preventing angiogenic outgrowth during early limb formation. Proceedings of the National Academy of Sciences USA 106(21): 8573-8578.
https://doi.org/10.1073/pnas.0901505106
PMid:19433787 PMCid:PMC2688998

Tsuji, T., Sun, Y., Kishimoto, K., Olson, K. A., Liu, S., Hirukawa, S. & Hu, G.-f. (2005). Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer research 65(4): 1352-1360.
https://doi.org/10.1158/0008-5472.CAN-04-2058
PMid:15735021

Uhl, K., Cox, E., Rogan, R., Zeldis, J. B., Hixon, D., Furlong, L.-A., Singer, S., Holliman, T., Beyer, J. & Woolever, W. (2006). Thalidomide Use in the US. Drug safety 29(4): 321-329.
https://doi.org/10.2165/00002018-200629040-00003
PMid:16569081

Van Lint, P. & Libert, C. (2007). Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. Journal of leukocyte biology 82(6): 1375-1381.
https://doi.org/10.1189/jlb.0607338
PMid:17709402

van Walsem, A., Pandhi, S., Nixon, R. M., Guyot, P., Karabis, A. & Moore, R. A. (2015). Relative benefit-risk comparing diclofenac to other traditional non-steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors in patients with osteoarthritis or rheumatoid arthritis: a network meta-analysis. Arthritis Research & Therapy 17(1): 66.
https://doi.org/10.1186/s13075-015-0554-0
PMid:25879879 PMCid:PMC4411793

Vargesson, N. (2009). Thalidomide-induced limb defects: resolving a 50-year-old puzzle. Bioessays 31(12): 1327-1336.
https://doi.org/10.1002/bies.200900103
PMid:19921660

Varinska, L., Mirossay, L., Mojzisova, G. & Mojzis, J. (2010). Antiangogenic effect of selected phytochemicals. Die Pharmazie-An International Journal of Pharmaceutical Sciences 65(1): 57-63.

Verma, R. P. & Hansch, C. (2007). Matrix metalloproteinases (MMPs): chemical–biological functions and (Q) SARs. Bioorganic & medicinal chemistry 15(6): 2223-2268.
https://doi.org/10.1016/j.bmc.2007.01.011
PMid:17275314

Xu, B., Shen, F., Cao, J. & Jia, L. (2013). Angiogenesis in liver metastasis of colo-rectal carcinoma. Front Biosci (Landmark Ed) 18: 1435-1443.
https://doi.org/10.2741/4190

Yoysungnoen, P., Wirachwong, P., Changtam, C., Suksamrarn, A. & Patumraj, S. (2008). Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World Journal of Gastroenterology : WJG 14(13): 2003-2009.
https://doi.org/10.3748/wjg.14.2003
PMid:18395899 PMCid:PMC2701520

Zhang, G., Miura, Y. & Yagasaki, K. (2000). Suppression of adhesion and invasion of hepatoma cells in culture by tea compounds through antioxidative activity. Cancer Letters 159(2): 169-173.
https://doi.org/10.1016/S0304-3835(00)00545-0

Zhang, J., Tang, Q., Xu, X. & Li, N. (2013). Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. International Journal of Pharmaceutics 448(1): 168-174.
https://doi.org/10.1016/j.ijpharm.2013.03.021
PMid:23524117

Zhu, Y., Bian, Z., Lu, P., Karas, R. H., Bao, L., Cox, D., Hodgin, J., Shaul, P. W., Thorén, P. & Smithies, O. (2002). Abnormal vascular function and hypertension in mice deficient in estrogen receptor β. Science 295(5554): 505-508.
https://doi.org/10.1126/science.1065250
PMid:11799247

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



18
Save
0
Citation
1346
View
3
Share