EMAN RESEARCH PUBLISHING | Journal | <p><em>Bacillus</em> spp.: Attractive Sources of Anti-cancer and Anti-proliferative Biomolecules</p>
Microbial and anti-microbial compound biology
REVIEWS   (Open Access)

Bacillus spp.: Attractive Sources of Anti-cancer and Anti-proliferative Biomolecules

Umme Tamanna Ferdousa, Md. Asaduzzaman Shishirb, Shakila Nargis Khana, Md. Mozammel Hoqa, *

+ Author Affiliations

Microbial Bioactives 1(1) 033-045 https://doi.org/10.25163/microbbioacts.11005B0408130818

Submitted: 04 May 2018  Revised: 08 August 2018  Published: 13 August 2018 

The review is describing the available anticancer and anti-proliferative agents reported worldwide from Bacillus spp.


Cancer treatment remains as an expensive process due to the cost of sophisticated infrastructure development as well as its maintenance with skilled personnel. At the same time, the success rate is not very inspiring since non-specific target oriented medication could cause other health complexities leading to death. Research for alternative therapies aimed at minimizing the side effects of treatments and increasing the survival rates of patients includes routine explorations for anticancer agents from numerous sources (e.g. microbes, plants and nanoparticles). Anticancer activities of several bacterial components especially from Bacillus spp. were reported in many scientific reports. For economic production of these agents, potential strains from this genus could be feasible and sustainable for their long and successful utilization in industries. The review is therefore, focused on describing the available anticancer and anti-proliferative agents reported worldwide from Bacillus spp.

Keywords: Bacillus spp., anti-cancer, anti-proliferative, bioactive, cancer therapy.

Significance: Potentials of Bacillus spp. in anti-cancer drug development.


Abdelnasser, S. M., Yahya, S. M. M., Mohamed, W. F., Asker, M. S., Shady, H. M. A., Mahmoud, M. G., & Gadallah, M. A. (2017). Antitumor Exopolysaccharides Derived from Novel Marine Bacillus?: Isolation , Characterization Aspect and Biological Activity. Asian Pac J Cancer Prev18(7), 1847–1854. https://doi.org/10.22034/APJCP.2017.18.7.1847

Abe, Y., Inoue, H., Ashida, H., Maeda, Y., Kinoshita, T., & Kitada, S. (2017). Glycan region of GPI anchored-protein is required for cytocidal oligomerization of an anticancer parasporin-2, Cry46Aa1 protein, from Bacillus thuringiensis strain A1547. Journal of Invertebrate Pathology142, 71–81. https://doi.org/10.1016/j.jip.2016.11.008

Aboul-Ela, H. M., Shreadah, M. A., Abdel-Monem, N. M., Yakout, G. A., & Soest, R. W. M. van. (2012). Isolation, cytotoxic activity and phylogenetic analysis of Bacillus sp. bacteria associated with the red sea sponge Amphimedon ochracea. Advances in Bioscience and Biotechnology03(07), 815–823. https://doi.org/10.4236/abb.2012.37101

Adams, G. P., & Weiner, L. M. (2005). Monoclonal antibody therapy of cancer. Nature Biotechnology23(9), 1147–1157. https://doi.org/10.1038/nbt1137

Ammons, D. R., Short, J. D., Bailey, J., Hinojosa, G., Tavarez, L., Salazar, M., & Rampersad, J. N. (2016). Anti-cancer Parasporin Toxins are Associated with Different Environments: Discovery of Two Novel Parasporin 5-like Genes. Current Microbiology. https://doi.org/10.1007/s00284-015-0934-3

Amran, N. (2017). Undertsanding cancer for non-technical pupils. Journal of Angiotherapy1(1), E039–E040. https://doi.org/10.25163/angiotherapy.11000951108100517

Araya, M., Morelli, L., Reid, G., Sanders, M. E., Stanton, C., Pineiro, M., & Ben Embarek, P. (2002). Guidelines for the Evaluation of Probiotics in Food. Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food, 1–11. https://doi.org/10.1111/j.1469-0691.2012.03873

Arnold, L. J., Dagan, A., Gutheil, J., & Kaplan, N. O. (1979). Antineoplastic activity of poly(L-lysine) with some ascites tumor cells. Proceedings of the National Academy of Sciences76(7), 3246–3250. https://doi.org/10.1073/pnas.76.7.3246

Aslam, M. S., Naveed, S., Ahmed, A., Abbas, Z., Gull, I., & Athar, M. A. (2014). Side Effects of Chemotherapy in Cancer Patients and Evaluation of Patients Opinion about Starvation Based Differential Chemotherapy. Journal of Cancer Therapy05(08), 817–822. https://doi.org/10.4236/jct.2014.58089

Austin, B. (1989). Novel pharmaceutical compounds from marine bacteria. Journal of Applied Bacteriology67, 461–470.

Azarin, H., Aramli, M. S., Imanpour, M. R., & Rajabpour, M. (2014). Effect of a Probiotic Containing Bacillus licheniformis and Bacillus subtilis and Ferroin Solution on Growth Performance, Body Composition and Haematological Parameters in Kutum (Rutilus frisii kutum) Fry. Probiotics and Antimicrobial Proteins7(1), 31–37. https://doi.org/10.1007/s12602-014-9180-4

Baruzzi, F., Quintieri, L., Morea, M., & Caputo, L. (2011). Antimicrobial compounds produced by Bacillus spp . and applications in food. Science against Microbial Pathogens: Communicating Current Research and Technological Advances, 1102–1111.

Bérdy, J. (2005). Bioactive Microbial Metabolites. The Journal of Antibiotics58(1), 1–26. https://doi.org/10.1038/ja.2005.1

Bhadoriya, S. S., Madoriya, N., Shukla, K., & Ms, P. (2013). Biochemistry & Pharmacology?: Open Access Biosurfactants?: A New Pharmaceutical Additive for Solubility Enhancement and Pharmaceutical Development. Biochemistry & Pharmacology2(2). https://doi.org/10.4172/2167-0501.1000113

Bhanot, A., Sharma, R., & Noolvi, M. N. (2011). Natural sources as potential anti-cancer agents: A review. International Journal of Phytomedicine3(1), 09-26. https://doi.org/10.5138/ijpm.v3i1.278

Blunt, J. W., Copp, B. R., Hu, W., Munro, M. H. G., & Northcote, T. (2008). Marine natural products. Nat. Prod. Rep25, 35–94. https://doi.org/10.1039/b701534h

Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews23(2), 382–398. https://doi.org/10.1128/CMR.00073-09

Burger, A. M., & Fiebig, H.-H. (2004). Preclinical Screening for New Anticancer Agents. Handbook of Anticancer Pharmacokinetics and PharmacodynamicsW. D. Figg(Humana Press Inc., Totowa, NJ), 29–44.

Chatterjee, P., Kouzi, S. A., Pezzuto, J. M., & Hamann, M. T. (2000). Biotransformation of the Antimelanoma Agent Betulinic Acid by Bacillus megaterium ATCC 13368. Applied and Environmental Microbiology66(9), 3850–3855.

Chen, Y.-T., Yuan, Q., Shan, L.-T., Lin, M.-A., Cheng, D.-Q., & Li, C.-Y. (2013). Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncology Letters5(6), 1787–1792. https://doi.org/10.3892/ol.2013.1284

Chew, Y. L., Lim, Y. Y., Omar, M., & Khoo, K. S. (2008). Antioxidant activity of three edible seaweeds from two areas in South East Asia. LWT41, 1067–1072. https://doi.org/10.1016/j.lwt.2007.06.013

Clayson, D. B., Mehta, R., & Iverson, F. (1994). Oxidative DNA damage - - The effects of certain genotoxic and operationally non-genotoxic carcinogens. Mutation Research317, 25–42.

Dahech, I., Belghith, K. S., Belghith, H., & Mejdoub, H. (2012). Partial purification of a Bacillus licheniformis levansucrase producing levan with antitumor activity. International Journal of Biological Macromolecules51(3), 329–335. https://doi.org/10.1016/j.ijbiomac.2012.04.030

Debabov, V. G. (1982). The industrial use of Bacilli. In D.A. Dubnau (Ed.), The molecular biology of the Bacilli (Vol. 1, pp. 331–370). New York: Academic Press Inc.

Devi, P. U. (1989). Basics of Carcinogenesis. Health Administrator17(1), 16–24.

Donio, M. B. S., Ronica, S. F. A., Viji, V. T., Velmurugan, S., Jenifer, J. A., & Michaelbabu, M. (2013). Isolation and characterization of halophilic Bacillus sp . BS3 able to produce pharmacologically important biosurfactants. Asian Pacific Journal of Tropical Medicine6(11), 876–883. https://doi.org/10.1016/S1995-7645(13)60156-X

Ekino, K., Okumura, S., Ishikawa, T., Kitada, S., Saitoh, H., Akao, T., … Mizuki, E. (2014). Cloning and characterization of a unique cytotoxic protein parasporin-5 produced by Bacillus thuringiensis a1100 strain. Toxins6(6). https://doi.org/10.3390/toxins6061882

El-sersy, N. A., Abdelwahab, A. E., & Abouelkhiir, S. S. (2012). Antibacterial and Anticancer activity of ε -poly-L-lysine ( ε -PL ) produced by a marine Bacillus subtilis sp . Journal of Basic Microbiology52, 1–10. https://doi.org/10.1002/jobm.201100290

Eppinger, M., Bunk, B., Johns, M. A., Edirisinghe, J. N., Kutumbaka, K. K., Koenig, S. S. K., … Vary, P. S. (2011). Genome sequences of the biotechnologically important Bacillus megaterium Strains QM B1551 and DSM319. Journal of Bacteriology193(16), 4199–4213. https://doi.org/10.1128/JB.00449-11

Franken, J., Brandt, B. A., Tai, S. L., & Bauer, F. F. (2013). Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PloS One8(10), e77499. https://doi.org/10.1371/journal.pone.0077499

Gallagher, M. P., Marshall, R. D., & Wilson, R. (1989). Asparaginase as a drug for treatment of acute lymphoblastic leukaemia. Essays in Biochemistry24, 1–40.

GMT, C., Lima, R. C., de Franca, F. P., & Lopes, C. E. (2000). Molecular weight and antitumour activity of Zymomonas mobilis levans. International Journal of Biological Macromolecules27(4), 245–247.

Gonzalez, E., Granados, J. C., Short, J. D., Ammons, D. R., & Rampersad, J. (2011). Parasporins from a Caribbean Island: Evidence for a Globally Dispersed Bacillus thuringiensis Strain. Current Microbiology62(5), 1643–1648. https://doi.org/10.1007/s00284-011-9905-5

Goutam Dey, Rashmi Bharti, Indranil Banerjee, Anjan Kumar Das, Chandan Kanta Das, Subhayan Das, Bikash Chandra Jena, Mridula Misra, R. S. and M. M. (2016). Pre-clinical Risk Assessment and therapeutic potential of Antitumor Lipopeptide ‘Iturin A’ in in vivo and in vitro Model. RSC Advances. https://doi.org/10.1039/C6RA13476A

Gudina, E. J., Rangarajan, V., & Sen, R. (2013). Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences34(12), 667–675. https://doi.org/10.1016/j.tips.2013.10.002

Haavik, H. I. (1979). Bacitracin Production by The Neotype Bacillus licheniformis ATCC 14580. Acta Path. Microbiol. Scand. Sect. B15(1), 126–130.

Häcker, G. (2000). The morphology of apoptosis. Cell Tissue Res301, 5–17.

Halliwell, B., Gutteridge, J. M., & Cross, C. E. (1992). Free radicals, antioxidants, and human disease: where are we now? The Journal of Laboratory and Clinical Medicine119(6), 598–620. https://doi.org/0022-2143(92)90284-R [pii]

Hamdache, A., Lamarti, A., & Collado, I. G. (2011). Non-peptide Metabolites from the Genus Bacillus. Journal of Natural Products74, 893–899.

Harris, F., & Pierpoint, L. (2012). Photodynamic therapy based on 5-aminolevulinic acid and its use as an antimicrobial Agent. Medicinal Research Reviews32(6), 1292–1327. https://doi.org/10.1002/med.20251

Henderson, B. E., Ross, R., & Bernstein, L. (1988). Estrogens as a Cause of Human Cancer. Cancer Research48, 246–253.

Hoption Cann, S. A., van Netten, J. P., & van Netten, C. (2003). Dr William Coley and tumour regression: a place in history or in the future. Postgraduate Medical Journal79(938), 672–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14707241

Hoq, Md. Mozammel, Siddiquee, khandaker al Zaid, Kawasaki, Hiroko, seki, T. (2005). Keratinolytic Activity of Some Newly Isolated Bacillus Speices. Journal of Biological Sciences5(2), 193–200.

Isoldi, M. C., Visconti, M. A., Maria, A., & Castrucci, D. L. (2005). Anti-Cancer Drugs?: Molecular Mechanisms of Action. Mini-Reviews in Medicinal Chemistry5(7), 685–695.

Ito, A., Sasaguri, Y., Kitada, S., Kusaka, Y., Kuwano, K., Masutomi, K., … Ohba, M. (2004). A Bacillus thuringiensis crystal protein with selective cytocidal action to human cells. Journal of Biological Chemistry279(20), 21282–21286. https://doi.org/10.1074/jbc.M401881200

Jacobs, M., Eliasson, M., Uhlén, M., & Flock, J. I. (1985). Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Research13(24), 8913–26. https://doi.org/10.1093/nar/13.24.8913

Jeong, S., Park, S., Kim, Y., Kim, M., & Lee, S. (2008). Cytotoxicity and apoptosis induction of Bacillus vallismortis BIT-33 metabolites on colon cancer carcinoma cells. Journal of Applied Microbiology104, 796–807. https://doi.org/10.1111/j.1365-2672.2007.03615.x

Kameda, Y., Matsui, K., Kato, H., Yamada, T., & Sagai, H. (1972). Antitumor Activity of Bacillus natto. III. Isolation and Characterization of a Cytolytic Substance on Ehrlich Ascites Carcinoma Cells in the Culture Medium of Bacillus natto KMD 1126. Chemical & Pharmaceutical Bulletin20(7), 1551–1557. https://doi.org/10.1248/cpb.20.1551

Kameda, Y., Oira, S., Matsui, K., Kanatomo, S., & Hase, T. (1974). Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chemical & Pharmaceutical Bulletin22(4), 938–44. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4473150

Katayama, H., Kusaka, Y., Yokota, H., Akao, T., Kojima, M., Nakamura, O., … Mizuki, E. (2007). Parasporin-1, a novel cytotoxic protein from Bacillus thuringiensis, induces Ca2+ influx and a sustained elevation of the cytoplasmic Ca2+ concentration in toxin-sensitive cells. Journal of Biological Chemistry282(10), 7742–7752. https://doi.org/10.1074/jbc.M611382200

Katayama, H., Yokota, H., Akao, T., Nakamura, O., Ohba, M., Mekada, E., & Mizuki, E. (2005). Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensis. Journal of Biochemistry137(1), 17–25. https://doi.org/10.1093/jb/mvi003

Kim, K. H., Chung, C. B., Kim, Y. H., Kim, K. S., Han, C. S., & Kim, C. H. (2005). Cosmeceutical properties of levan produced by Zymomonas mobilis. Journal of Cosmetic Science56(6), 395–406.

Kumar, D., Savitri, Thakur, N., Verma, R., & Bhalla, T. (2008). Microbial Proteases and Application as Laundry Detergent Additives. Research Journal of Microbiology3(12), 661–672.

Kumar, M. L. V., Thippeswamy, B., & Raj, P. V. (2014). Cytotoxicity and Anticancer Studies of Bacillus cereus and Bacillus pumilus Metabolites Targeting Human Cancer Cells 1. Applied Biochemistry and Microbiology50(6), 619–623. https://doi.org/10.1134/S0003683814060088

Kumar, S. N., Nambisan, B., Kumar, B. S. D., Vasudevan, N. G., Mohandas, C., Cheriyan, V. T., & Anto, R. J. (2013). Antioxidant and anticancer activity of 3,5-dihydroxy-4-isopropylstilbene produced by Bacillus sp. N strain isolated from entomopathogenic nematode. Archives of Pharmacal Research, (3), 1–11. https://doi.org/10.1007/s12272-013-0207-2

Lee, N. K., Park, J. S., Park, E., & Paik, H. D. (2007). Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Letters in Applied Microbiology44(3), 274–278. https://doi.org/10.1111/j.1472-765X.2006.02078.x

Li, C. (2013). Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncology Letters5(548), 1787–1792. https://doi.org/10.3892/ol.2013.1284

Li, Y., Xu, Y., Liu, L., Han, Z., Lai, P. Y., Guo, X., … Qian, P. (2012). Five New Amicoumacins Isolated from a Marine-Derived Bacterium Bacillus subtilis. Marine Drugs10, 319–328. https://doi.org/10.3390/md10020319

Lin X, Lee CG, Casale ES, S. J. (1992). Purification and characterization of a keratinase from a degrading Bacillus licheniformis strain. Appl Environ Microbiol58:(10), 3271–3275.

Liu, L., Liu, Y., Shin, H., Chen, R. R., Wang, N. S., Li, J., … Chen, J. (2013). Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Applied Microbiology and Biotechnology97(14), 6113–6127. https://doi.org/10.1007/s00253-013-4960-4

Ma, Elise L., Choi, Y. J., Choi, J., Pothoulakis, C., Rhee, S. H., Im, E., Bowel, I., & Angeles, L. (2015). The anti-cancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int J Cancer.127(4), 780–790. https://doi.org/10.1002/ijc.25011.The

Ma, E. L., Choi, Y. J., Choi, J., Pothoulakis, C., Rhee, S. H., & Im, E. (2010). The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. International Journal of Cancer127(4), 780–90. https://doi.org/10.1002/ijc.25011

Ma, Z., Wang, N., Hu, J., & Wang, S. (2012). Isolation and characterization of a new iturinic lipopeptide , mojavensin A produced by a marine-derived bacterium Bacillus mojavensis. The Journal of Antibiotics65(6), 317–322. https://doi.org/10.1038/ja.2012.19

Mahajan, R. V, Kumar, V., Rajendran, V., Saran, S., Ghosh, P. C., & Saxena, R. K. (2014). Purification and Characterization of a Novel and Robust L-Asparaginase Having Low-Glutaminase Activity from Bacillus licheniformis: In Vitro Evaluation of Anti-Cancerous Properties. PLoS One9(6), e99037. https://doi.org/10.1371/journal.pone.0099037

Makkar, R. S., Cameotra, S. S., & Banat, I. M. (2011). Advances in utilization of renewable substrates for biosurfactant production. AMB Express1(1), 5. https://doi.org/10.1186/2191-0855-1-5

Malkov, S. V, Markelov, V. V, Polozov, G. Y., & Sobchuk, L. I. (2005). Antitumor features of Bacillus oligonitrophilus KU-1 strain. J Microbiol Immunol Infect38, 96–104.

Mashburn, L. T., & Wriston, J. C. (1963). Tumor inhibitory effect of L-asparaginase. Biochemical and Biophysical Research Communications12(1), 50–55. https://doi.org/10.1016/0006-291X(63)90412-1

Mccredie, K. B., Ho, D. H. W., & EmilJ. Freireich. (1953). L-Asparaginase forthe Treatmentof Cancer. CA: A Cancer Journal for Clinitians23(4), 220–228.

Meena, K. R., Sharma, A., & Kanwar, S. S. (2017). Microbial Lipopeptides and their Medical Applications. Annals of Pharmacology and Pharmaceutics2(21), 1–5.

Mizuki, E., Ohba, M., Akao, T., Yamashita, S., Saitoh, H., & Park, Y. S. (1999). Unique activity associated with non-insecticidal Bacillus thuringiensis parasporal inclusions: in vitro cell-killing action on human cancer cells. Journal of Applied Microbiology86(3), 477–486. https://doi.org/10.1046/j.1365-2672.1999.00692.x

Nagamatsu, Y., Okamura, S., Saitou, H., Akao, T., & Mizuki, E. (2010). Three Cry toxins in two types from Bacillus thuringiensis strain M019 preferentially kill human hepatocyte cancer and uterus cervix cancer cells. Bioscience, Biotechnology, and Biochemistry74(3), 494–8. https://doi.org/10.1271/bbb.90615

Nahar, M., Shishir, M. A., Waliullah, S., Haque, M. S., Ilias, M., Karim, M. M., … Hoq, M. M. (2016). Cloning, expression and structure simulation of keratinase from Bacillus licheniformis strain MZK05. Malaysian Journal of Microbiology12(2), 182–190. https://doi.org/10.21161/mjm.78515

Nandakumar, N., Jayaprakash, R., Rengarajan, T., Ramesh, V., & Balasubramanian, M. P. (2011). Hesperidin , a natural citrus flavonoglycoside , normalizes lipid peroxidation and membrane bound marker enzymes in 7 , 12-Dimethylbenz ( a ) anthracene induced experimental breast cancer rats. Biomedicine & Preventive Nutrition1(4), 255–262. https://doi.org/10.1016/j.bionut.2011.06.004

Okumura, S., Koga, H., Inouye, K., & Mizuki, E. (2014). Toxicity of Parasporin-4 and Health Effects of Pro-parasporin-4 Diet in Mice. Toxins6, 2115–2126. https://doi.org/10.3390/toxins6072115

Okumura, S., Ohba, M., Mizuki, E., Crickmore, N., Côté, J.-C., Nagamatsu, Y., … Shin, T. (2010). Parasporin nomenclature. Retrieved December 10, 2017, from http://parasporin.fitc.pref.fukuoka.jp/

Okumura, S., Saitoh, H., Ishikawa, T., Inouye, K., & Mizuki, E. (2011). Mode of action of parasporin-4 , a cytocidal protein from Bacillus thuringiensis. Biochimica et Biophysica Acta1808(6), 1476–1482. https://doi.org/10.1016/j.bbamem.2010.11.003

Papagianni, M. (2012). Recent advances in engineering the central carbon metabolism of industrially important bacteria. Microbial Cell Factories. https://doi.org/10.1186/1475-2859-11-50

Park, G. H., Song, H. M., Kim, Y. S., Jeon, Y., Koo, J. S., Jeong, H. J., & Jeong, J. B. (2017). Anti-cancer activity of Bacillus amyloliquefaciens AK-0 through cyclin D1 proteasomal degradation via GSK3β-dependent phosphorylation of threonine-286. Die Pharmazie72(6), 348–354. https://doi.org/10.1691/ph.2017.6199

Parsonnet, J. (1995). Bacterial Infection as a Cause of Cancer. Environmental Health Perspectives, (7), 263–268.

Parthiban, K., Vignesh, V., & Thirumurugan, R. (2014). Characterization and in vitro studies on anticancer activity of exopolymer of Bacillus thuringiensis S13. African Journal of Biotechnology13(21), 2137–2144. https://doi.org/10.5897/AJB2014.13741

Patyar, S., Joshi, R., Byrav, D. S. P., Prakash, A., Medhi, B., & Das, B. K. (2010). Bacteria in cancer therapy: a novel experimental strategy. Journal of Biomedical Science17(1), 21. https://doi.org/10.1186/1423-0127-17-21

Payne, S., & Miles, D. (2008). Mechanisms of anticancer drugs. In Scott-Brown’s Otorhinolaryngology: Head and Neck Surgery (7th ed., pp. 34–46).

Pettit, G. R., Arce, P. M., Chapuis, J. C., & Macdonald, C. B. (2015). Antineoplastic agents. 600. from the south pacific ocean to the silstatins. Journal of Natural Products78(3), 510–523. https://doi.org/10.1021/np501004h

Pettit, G. R., Knight, J. C., Herald, D. L., Pettit, R. K., Hogan, F., Mukku, J. R. V, … Chapuis, J. (2010). Antineoplastic Agents. 570. Isolation and Structure Elucidation of Bacillistatins 1 and 2 from a Marine Bacillus silvestris. J Nat Prod.72(3), 366–371. https://doi.org/10.1021/np800603u.Antineoplastic

Piggot, P. J. (2009). Bacillus Subtilis A2  - Schaechter, Moselio BT  - Encyclopedia of Microbiology (Third Edition) (pp. 45–56). Oxford: Academic Press. https://doi.org/https://doi.org/10.1016/B978-012373944-5.00036-5

Pisha Emily, Chai Heebyung, Lee Ik-Soo, Chagwedera Tangai E, F. N. R. et al. (1995). Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nature Medicine1, 1046–1051.

Poornima, K., Selvanayagam, P., & Shenbagarathai, R. (2010). Identification of native Bacillus thuringiensis strain from South India having specific cytocidal activity against cancer cells. Journal of Applied Microbiology4, 348–354. https://doi.org/10.1111/j.1365-2672.2010.04697.x

Porwal, S., Lal, S., Cheema, S., & Kalia, V. C. (2009). Phylogeny in aid of the present and novel microbial lineages: diversity in Bacillus. PloS One4(2), e4438. https://doi.org/10.1371/journal.pone.0004438

Prasad, S. S., & Shethna, Y. I. (1974). Purification, crystallization and partial characterization of the antitumour and  insecticidal protein subunit from the delta-endotoxin of Bacillus thuringiensis var. thuringiensis. Biochimica et Biophysica Acta362(3), 558–566.

Prokhorova, I. V., Akulich, K. A., Makeeva, D. S., Osterman, I. A., Skvortsov, D. A., Sergiev, P. V., … Dmitriev, S. E. (2016). Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome. Scientific Reports6(1), 27720. https://doi.org/10.1038/srep27720

Queiroz, E. A. I. F., Fortes, Z. B., da Cunha, M. A. A., Sarilmiser, H. K., Barbosa Dekker, A. M., Öner, E. T., … Khaper, N. (2017). Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. International Journal of Biological Macromolecules102, 565–570. https://doi.org/10.1016/j.ijbiomac.2017.04.035

Radha, S., & Gunasekaran, P. (2007). Cloning and expression of keratinase gene in Bacillus megaterium and optimization of fermentation conditions for the production of keratinase by recombinant strain. Journal of Applied Microbiology103(4), 1301–10. https://doi.org/10.1111/j.1365-2672.2007.03372.x

Ramasubburayan, R., Sumathi, S., Bercy, D. M., Immanuel, G., & Palavesam, A. (2015). Antimicrobial, antioxidant and anticancer activities of mangrove associated bacterium Bacillus subtilis subsp. subtilis RG. Biocatalysis and Agricultural Biotechnology4(2), 158–165. https://doi.org/10.1016/j.bcab.2015.01.004

Reddy, L., Odhav, B., & Bhoola, K. D. (2003). Natural products for cancer prevention: A global perspective. Pharmacology and Therapeutics99(1), 1–13. https://doi.org/10.1016/S0163-7258(03)00042-1

Reid, G., Jass, J., Sebulsky, M. T., & McCormick, J. K. (2003). Potential uses of probiotics in clinical practice. Clinical Microbiology Reviews16(4), 658–72. https://doi.org/10.1128/CMR.16.4.658

Rey, M. W., Ramaiya, P., Nelson, B. A., Brody-Karpin, S. D., Zaretsky, E. J., Tang, M., … Berka, R. M. (2004). Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol.5(1465–6914 (Electronic)), R77. https://doi.org/10.1186/gb-2004-5-10-r77

Roberts, E. R., & Jean, K. (2013). The role of mitochondria in the development and progression of lung cancer Abstract?: The influence of mitochondria in human health and disease is a rapidly expanding topic in the scientific literature due to their integral roles in cellular death and sur. Computational and Structural Biotechnology6(7), 1–11. https://doi.org/10.5936/csbj.201303019

Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews Cancer7(10), 737–749. https://doi.org/10.1038/nrc2229

Sareen, R., Bornscheuer, U. T., & Mishra, P. (2005). Cloning, functional expression and characterization of an alkaline protease from Bacillus licheniformis. Biotechnology Letters27(23–24), 1901–7. https://doi.org/10.1007/s10529-005-3901-4

Seerangaraj, V., KannanSuruli, Vijayakumar, U., Meganathan, B., Seerangaraj, V., Selvam, S., … Selvaraj, J. (2017). Isolation and Characterization of Bioactive Compounds from Bacillus cereus and Bacillus subtilis from Oreochromis mossambicus and Labeo rohita. International Journal of Pharmaceutical Sciences Review and Research43(2), 71–77.

Shrivastava, A., Khan, A. A., Khurshid, M., Kalam, M. A., Jain, S. K., & Singhal, P. K. (2016). Recent developments in l-asparaginase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology100, 1–10. https://doi.org/10.1016/j.critrevonc.2015.01.002

Slepecky, R. A., & Hemphill, H. E. (2006). The Genus Bacillus—NonmedicalThe Prokaryotes. https://doi.org/10.1007/0-387-30744-3_16

Steller, H. (1995). Mechanisms and genes of cellular suicide. Science267(5203), 1445–1449. https://doi.org/10.1126/science.7878463

Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural Products from Endophytic Microorganisms. J. Nat. Prod.67, 257–268.

Szende, B., Szökán, G., Tyihá, E., Pál, K., Gáborjányi, R., Almás, M., & Khlafulla, A. R. (2002). Antitumor effect of lysine-isopeptides. Cancer Cell International7, 1–7.

Tang, X.-M., Shen, W., Lakay, F. M., Shao, W.-L., Wang, Z.-X., Prior, B. A., & Zhuge, J. (2004). Cloning and over-expression of an alkaline protease from Bacillus licheniformis. Biotechnology Letters26(12), 975–9. https://doi.org/10.1023/B

Tareq, F. S., Kim, J. H., Lee, M. A., Lee, H.-S., Lee, Y.-J., Lee, J. S., & Shin, H. J. (2013). Ieodoglucomides A and B from a Marine-Derived Bacterium Bacillus licheniformis. Organic Letters15(8), 2071–2071. https://doi.org/10.1021/ol4008603

Tiwary, E., & Gupta, R. (2010). Medium optimization for a novel 58 kDa dimeric keratinase from Bacillus licheniformis ER-15: Biochemical characterization and application in feather degradation and dehairing of hides. Bioresource Technology101(15), 6103–6110. https://doi.org/10.1016/j.biortech.2010.02.090

Trischman, J. A., Jensen, P. R., & Fenical, W. (1994). Halobacillin: A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Letters35(31), 5571–5574. https://doi.org/10.1016/S0040-4039(00)77249-2

van Dijl, J. M., & Hecker, M. (2013). Bacillus subtilis?: From soil bacterium to super- secreting cell factory. Microbial Cell Factories12, 3. https://doi.org/10.1186/1475-2859-12-3

Veith, B., Herzberg, C., Steckel, S., Feesche, J., Maurer, K. H., Ehrenreich, P., … Gottschalk, G. (2004). The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. Journal of Molecular Microbiology and Biotechnology7(4), 204–211. https://doi.org/10.1159/000079829

Vijayaram Seerangaraja*, KannanSurulia, Usharani Vijayakumarb, Boominathan Meganathanc, V. S., & Sathiyavimal Selvame, Vijayakumar Rajendran f, J. S. (2017). “Isolation and Characterization of Bioactive Compounds from Bacillus cereus and Bacillus subtilis from Oreochromi.... Int. J. Pharm. Sci. Rev. Res.43(2), 71–77.

Weston, A., & Harris, C. C. (2003). Multistage Carcinogenesis. In D. W. Kufe, W. Hait, J. F. Holland, E. Frei, & R. E. Pollock (Eds.), Holland-Frei Cancer Medicine (6th ed.). Hamilton (ON): BC Decker; 2003. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK13982/

WHO media center. (2017). Cancer fact sheet. Retrieved from http://www.who.int/mediacentre/factsheets/fs297/en/

Wu, Y. S., Ngai, S. C., Goh, B. H., Chan, K. G., Lee, L. H., & Chuah, L. H. (2017). Anticancer activities of surfactin potential application of nanotechnology assisted surfactin delivery. Frontiers in Pharmacology8(OCT), 1–22. https://doi.org/10.3389/fphar.2017.00761

Wyllie, A. H. (1992). Apoptosis and the regulation of cell numbers in normal and neoplastic tissues?: an overview. Cancer and Metastasis Reviews11, 95–103.

Xu, C., Wang, B.-C., & Yu, Ziniu and Sun, M. (2014). Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins. Toxins6, 2732–2770. https://doi.org/10.3390/toxins6092732

Yamashita, S., Katayama, H., Saitoh, H., Akao, T., Park, Y. S., Mizuki, E., … Ito, A. (2005). Typical three-domain cry proteins of Bacillus thuringiensis strain A1462 exhibit cytocidal activity on limited human cancer cells. Journal of Biochemistry138(6), 663–672. https://doi.org/10.1093/jb/mvi177

Yeo, C. D., Kang, N., Choi, S. Y., Kim, B. N., Park, C. K., Kim, J. W., … Kim, S. J. (2017). The role of hypoxia on the acquisition of epithelial-mesenchymal transition and cancer stemness: A possible link to epigenetic regulation. Korean Journal of Internal Medicine32(4), 589–599. https://doi.org/10.3904/kjim.2016.302

Yokota, J. (2000). Tumor progression and metastasis . Carcinogenesis21(3), 497–503. Retrieved from http://dx.doi.org/10.1093/carcin/21.3.497

Yoo, S., Yoon, E. J., Cha, J., & Lee, H. G. (2004). Antitumor activity of levan polysaccharides from selected microorganisms. International Journal of Biological Macromolecules34(1–2), 37–41. https://doi.org/10.1016/j.ijbiomac.2004.01.002

Yoshioka, K., Saito, M., Oh, K.-B., Nemoto, Y., Matsuoka, H., Natsume, M., & Abe, H. (1996). Intracellular Fate of 2-NBDG, a Fluorescent Probe for Glucose Uptake Activity, in Escherichia coli Cells. Bioscience, Biotechnology, and Biochemistry60(11), 1899–1901. https://doi.org/10.1271/bbb.60.1899

Yu, A., & Li, L. (2016). The Potential Role of Probiotics in Cancer Prevention and Treatment. Nutrition and Cancer, 1–10. https://doi.org/10.1080/01635581.2016.1158300

Zacharski, L. R., & Sukhatme, V. P. (2005). Coley’s toxin revisited: immunotherapy or plasminogen activator therapy of cancer? Journal of Thrombosis and Haemostasis3(3), 424–7. https://doi.org/10.1111/j.1538-7836.2005.01110.x

ZHang, H. L., Hua, H. M., & Pei, Y. H. (2004). Three New Cytotoxic Cyclic Acylpeptides from Marine Bacillus sp . Chem. Pharm. Bull.52(8), 1029–1030.

Committee on Publication Ethics

Supplementary Material
Full Text
Export Citation

View Dimensions

View Plumx

View Altmetric