Mitochondrial Targeted AFG3 Abolishment Triggers Higher Mitochondrial Membrane Potential (ΔΨm) in Young Yeast
Ashfaqul Muid Khandakera*, Ahmet Kocb
Microbial Bioactives 3(1) 119-124 https://doi.org/10.25163/microbbioacts.31003A0713270620
Submitted: 07 April 2020 Revised: 11 June 2020 Published: 27 June 2020
Molecular insight into the human genetic disease, spastic paraplegia through yeast model
Abstract
Yeast AFG3 gene is homologous to human AFG3L2 and SPG7 genes whose encoded proteins interact with each other on the mitochondrial inner membrane to form the m-AAA metalloproteinase complex. Mutations associated with the gene SPG7 cause autosomal recessive disease spastic paraplegia and a type of ataxia in human but the mitochondrial activity in terms of mitochondrial membrane potential was not investigated previously. In our earlier study, we characterized AFG3 gene deletion yeast mutant and found this mutant gained altered mitochondrial morphology and functions such as mitochondrial aggregation, absence of ROS, less ATP etc. In this current study, we further investigated the effect of AFG3 deletion on mitochondrial health and activation in yeast models. To do so, the rate of oxygen consumption was measured and found that afg3Δ consumed less amount of oxygen compared to wild type (WT). In addition, mitochondrial membrane potential was measured and found that young afg3Δ gained significantly higher membrane potential (doubled) compared to WT. As Afg3 degrades unassembled or unfolded proteins, we also analyzed mitochondrial unfolded protein response (UPRmt) signal and found inactivated indicating mitochondrial proteostatic balance was any how managed and augmentation of ΔΨm may play role here. Physical interaction with AFG3 were sorted out and classified in order to find out how the interactive network may hamper due to abolishment of the Afg3 protein function. Thus this investigation in yeast (Saccharomyces cerevisiae) model may provide additional information in the study of human spastic paraplegia.
Keywords: Mitochondrial membrane potential (ΔΨm), Oxygen consumption, AFG3, mitochondrial unfolded protein response (UPRmt) and human spastic paraplegia
References
Arlt, H., Steglich, G., Perryman, R., Guiard, B., Neupert, W., & Langer, T. (1998). The formation of respiratory chain complexes in mitochondria is under the proteolytic control of the m-AAA protease. EMBO Journal, 17, 4837-4847. https://doi.org/10.1093/emboj/17.16.4837
Arlt, H., Tauer, R., Feldmann, H., Neupert, W., & Langer, T. (1996). The YTA10-12 complex, an AAA protease with chaperone-like activity in the inner membrane of mitochondria. Cell, 85 (6), 875-885. https://doi.org/10.1016/S0092-8674(00)81271-4
Benedetti, C., Haynes, C. M., Yang, Y., Harding, H. P., & Ron, D. (2006). Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics, 174 (1), 229-239. https://doi.org/10.1534/genetics.106.061580
Callegari, S., & Dennerlein, S. (2018). Sensing the stress: A role for the UPRmt and UPRam in the quality control of mitochondria. In Frontiers in Cell and Developmental Biology, 6, 31. https://doi.org/10.3389/fcell.2018.00031
Casari, G., De Fusco, M., Ciarmatori, S., Zeviani, M., Mora, M., Fernandez, P., De Michele, G., Filla, A., Cocozza, S., Marconi, R., Dürr, A., Fontaine, B., & Ballabio, A. (1998). Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell, 93 (6), 973-983. https://doi.org/10.1016/S0092-8674(00)81203-9
Chen, X. J., & Clark-Walker, G. D. (1999). The petite mutation in yeasts: 50 years on. In International Review of Cytology, 194, 197-238. https://doi.org/10.1016/s0074-7696(08)62397-9
Copeland, J. M., Cho, J., Lo, T., Hur, J. H., Bahadorani, S., Arabyan, T., Rabie, J., Soh, J., & Walker, D. W. (2009). Extension of Drosophila Life Span by RNAi of the Mitochondrial Respiratory Chain. Current Biology, 19 (19), 1591-1598. https://doi.org/10.1016/j.cub.2009.08.016
De Michele, G., De Fusco, M., Cavalcanti, F., Filla, A., Marconi, R., Volpe, G., Monticelli, A., Ballabio, A., Casari, G., & Cocozza, S. (1998). A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. American Journal of Human Genetics, 63 (1), 135-139. https://doi.org/10.1086/301930
Delaney, J. R., Ahmed, U., Chou, A., Sim, S., Carr, D., Murakami, C. J., Schleit, J., Sutphin, G. L., An, E. H., Castanza, A., Fletcher, M., Higgins, S., Jelic, M., Klum, S., Muller, B., Peng, Z. J., Rai, D., Ros, V., Singh, M., … Kaeberlein, M. (2013). Stress profiling of longevity mutants identifies Afg3 as a mitochondrial determinant of cytoplasmic mRNA translation and aging. Aging Cell, 12 (1), 156-166. https://doi.org/10.1111/acel.12032
Delaney, J. R., Murakami, C. J., Olsen, B., Kennedy, B. K., & Kaeberlein, M. (2011). Quantitative evidence for early life fitness defects from 32 longevity-associated alleles in yeast. Cell Cycle, 10 (1), 156-165. https://doi.org/10.4161/cc.10.1.14457
Di Bella, D., Lazzaro, F., Brusco, A., Plumari, M., Battaglia, G., Pastore, A., Finardi, A., Cagnoli, C., Tempia, F., Frontali, M., Veneziano, L., Sacco, T., Boda, E., Brussino, A., Bonn, F., Castellotti, B., Baratta, S., Mariotti, C., Gellera, C., … Taroni, F. (2010). Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nature Genetics, 42, 313-321. https://doi.org/10.1038/ng.544
Dunn, C. D., & Jensen, R. E. (2003). Suppression of a defect in mitochondrial protein import identifies cytosolic proteins required for viability of yeast cells lacking mitochondrial DNA. Genetics, 165 (1), 35-45.
Durieux, J., Wolff, S., & Dillin, A. (2011). The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell, 144 (1), 77-91. https://doi.org/10.1016/j.cell.2010.12.016
Flikweert, M. T., Van Der Zanden, L., Janssen, W. M. T. M., Steensma, H. Y., Van Dijken, J. P., & Pronk, J. T. (1996). Pyruvate decarboxylase: An indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast, 12 (3), 247-257. https://doi.org/10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I
Garipler, G., Mutlu, N., Lack, N. A., & Dunn, C. D. (2014). Deletion of conserved protein phosphatases reverses defects associated with mitochondrial DNA damage in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 111 (4), 1473-1478. https://doi.org/10.1073/pnas.1312399111
Haynes, C. M., & Ron, D. (2010). The mitochondrial UPR - Protecting organelle protein homeostasis. In Journal of Cell Science, 123 (22), 3849-3855. https://doi.org/10.1242/jcs.075119
Houtkooper, R. H., Mouchiroud, L., Ryu, D., Moullan, N., Katsyuba, E., Knott, G., Williams, R. W., & Auwerx, J. (2013). Mitonuclear protein imbalance as a conserved longevity mechanism. Nature, 497, 451-457. https://doi.org/10.1038/nature12188
Hughes, A. L., & Gottschling, D. E. (2012). An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature, 492, 261-265. https://doi.org/10.1038/nature11654
Hulbert, A. J., Pamplona, R., Buffenstein, R., & Buttemer, W. A. (2007). Life and death: Metabolic rate, membrane composition, and life span of animals. In Physiological Reviews, 87, 1175-1213. https://doi.org/10.1152/physrev.00047.2006
Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C. M., & Clevenger, W. (2003). Inducible expression of a dominant negative DNA polymerase-γ depletes mitochondrial DNA and produces a ρ0 phenotype. Journal of Biological Chemistry, 278 (11), 9823-9830. https://doi.org/10.1074/jbc.M211730200
Jazwinski, S. M. (2004). Yeast replicative life span - The mitochondrial connection. In FEMS Yeast Research, 5 (2), 119-125. https://doi.org/10.1016/j.femsyr.2004.04.005
Jazwinski, S. M. (2013). The retrograde response: When mitochondrial quality control is not enough. In Biochimica et Biophysica Acta - Molecular Cell Research, 1833 (2), 400-409. https://doi.org/10.1016/j.bbamcr.2012.02.010
Jazwinski, S. M., & Kriete, A. (2012). The yeast retrograde response as a model of intracellular signaling of mitochondrial dysfunction. In Frontiers in Physiology, 3, 139. https://doi.org/10.3389/fphys.2012.00139
Jovaisaite, V., Mouchiroud, L., & Auwerx, J. (2014). The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. In Journal of Experimental Biology, 217, 137-143. https://doi.org/10.1242/jeb.090738
Liu, W., Li, L., Ye, H., Chen, H., Shen, W., Zhong, Y., Tian, T., & He, H. (2017). From Saccharomyces cerevisiae to human: The important gene co-expression modules. Biomedical Reports, 7, 153-158. https://doi.org/10.3892/br.2017.941
Miwa, S., Jow, H., Baty, K., Johnson, A., Czapiewski, R., Saretzki, G., Treumann, A., & Von Zglinicki, T. (2014). Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice. Nature Communications, 5, 3837. https://doi.org/10.1038/ncomms4837
Muid, K. A., Kimyon, Ö., Reza, S. H., Karakaya, H. C., & Koc, A. (2019). Characterization of long living yeast deletion mutants that lack mitochondrial metabolism genes DSS1, PPA2 and AFG3. Gene, 706, 172-180. https://doi.org/10.1016/j.gene.2019.05.001
Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., Yang, Y., Linehan, W. M., Chandel, N. S., & Deberardinis, R. J. (2012). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481 (7381), 385-388. https://doi.org/10.1038/nature10642
Nolden, M., Ehses, S., Koppen, M., Bernacchia, A., Rugarli, E. I., & Langer, T. (2005). The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell, 123 (2), 277-289. https://doi.org/10.1016/j.cell.2005.08.003
Pfeffer, G., Pyle, A., Griffin, H., Miller, J., Wilson, V., Turnbull, L., Fawcett, K., Sims, D., Eglon, G., Hadjivassiliou, M., Horvath, R., Németh, A., & Chinnery, P. F. (2015). SPG7 mutations are a common cause of undiagnosed ataxia. Neurology, 84 (11), 1174-1176. https://doi.org/10.1212/WNL.0000000000001369
Van Den Berg, M. A., & Steensma, H. Y. (1995). ACS2, a Saccharomyces Cerevisiae Gene Encoding Acetyl-Coenzyme A Synthetase, Essential for Growth on Glucose. European Journal of Biochemistry, 231 (3), 704-713. https://doi.org/10.1111/j.1432-1033.1995.0704d.x
Veatch, J. R., McMurray, M. A., Nelson, Z. W., & Gottschling, D. E. (2009). Mitochondrial Dysfunction Leads to Nuclear Genome Instability via an Iron-Sulfur Cluster Defect. Cell, 137 (7), 1247-1258. https://doi.org/10.1016/j.cell.2009.04.014
Warnecke, T., Duning, T., Schirmacher, A., Mohammadi, S., Schwindt, W., Lohmann, H., Dziewas, R., Deppe, M., Ringelstein, E. B., & Young, P. (2010). A novel splice site mutation in the SPG7 gene causing widespread fiber damage in homozygous and heterozygous subjects. Movement Disorders, 25 (4), 413-420. https://doi.org/10.1002/mds.22949
Wright, S. H. (2004). Generation of resting membrane potential. American Journal of Physiology - Advances in Physiology Education, 28 (4), 139-142. https://doi.org/10.1152/advan.00029.2004
View Dimensions
View Altmetric
Save
Citation
View
Share