MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
RESEARCH ARTICLE   (Open Access)

Study of the Effects of Complexation of Lead with Metformin, Glimepiride, Vildagliptin and Dapagliflozin in Mice Model

Fahima Aktar, Md. Zakir Sultan, Mohammad A. Rashid

+ Author Affiliations

Microbial Bioactives 3(1) 125-133 https://doi.org/10.25163/microbbioacts.31210910822111120

Submitted: 08 October 2020  Revised: 22 October 2020  Published: 11 November 2020 

Abstract

Lead is abundant in the air, water and soil as a pollutant. It is sometimes consumed by humans in excessive amounts, which can lead to toxicity in the body or may interact with soluble drugs, thus altering their therapeutic efficacy. In this study, four antidiabetic drugs were synthesized to form a complex with metallic lead at different conditions. The formation of four complexes viz. Pb-metformin, Pb-glimepiride, Pb-vildagliptin, and Pb-dapagliflozin was established and confirmed by TLC, DSC, TGA and FT-IR data analysis. The physiological effects of these complexes was then examined using a mice model. After treatment, blood glucose, serum creatinine and uric acid were measured and histopathology of hepatic and nephrotic tissues were studied. Control treatments of metformin, glimepiride, vildagliptin and dapagliflozin reduced blood glucose levels in mice from 31.54 to 19.02 mmol/L, 30.24 to 17.20 mmol/L, 31.50 to 19.70 mmol/L and 30.37 to 17.60 mmol/L, respectively, whereas Pb-met, Pb-glim, Pb-vilda, and Pb-dapa slightly increased blood glucose levels compared to control after 14 days of treatment from 30.60 to 25.82 mmol/L, 30.22 to 29.23 mmol/L, 31.93 to 25.32 mmol/L and 32.25 to 29.32 mmol/L, respectively. The serum creatinine levels increased from 3.38, 3.96, 3.60 and 3.42 mg/dL on metformin, glimepiride, vildagliptin and dagagliflozin respectively to 4.57, 5.36, 5.21 and 5.24 mg/dL on the lead-complex forms of those respective medications. Similarly, the serum acid levels also increased from 42.91, 44.83, 40.21 and 41.49 mg/dL on metformin, glimepiride, vildagliptin and dagagliflozin respectively to 53.13, 57.40, 49.36 and 53.32 mg/dL on the lead-complex forms of those respective medications. Both high creatinine and uric acid level after treatment with lead complexes indicated nephrotic toxicity.

Keywords: Antidiabetic drugs, complexation, Lead, Creatinine, Uric acid

References

Afridi, H.I., Kazi, T.G., Kazi, N., Jamali, M.K., Arain, M.B.,Jalbani, N., Baig, J.A. & Sarfraz, R.A. (2008). Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabet. Res. Clin. Pract. 80, 280-288.
https://doi.org/10.1016/j.diabres.2007.12.021
PMid:18276029
 
Ahren, B., Schweizer, A., Dejager, S., Villhauer, E. B., Dunning, B. E. & Foley, J. E. (2011). Mechanisms of action of the dipeptidyl peptidase-4 inhibitor vildagliptin in humans. Diabet. Obes. Metabol. 13, 775-783.
https://doi.org/10.1111/j.1463-1326.2011.01414.x
PMid:21507182
 
Barham, D. & Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 97, 142-145.
https://doi.org/10.1039/an9729700142
PMid:5037807
 
Bener, A., Obineche, E., Gillett, M., Pasha, M.A. & Bishawi, B. (2001). Association between blood levels of lead, blood pressure and risk of diabetes and heart disease in workers. Int. Arch. Occup. Environ. Health. 74, 375-378.
https://doi.org/10.1007/s004200100231
PMid:11516073
 
Bokara, K.K., Blaylock, I., Denise, S.B., Bettaiya, R., Rajanna, S. & Yallapragada, P.R. (2009). Influence of lead acetate on glutathione and its related enzymes in different regions of rat brain. J. Appl. Toxicol. 29, 452-458.
https://doi.org/10.1002/jat.1423
PMid:19263481
 
Brunton, L. L., Lazo, J. S. & Parker. K. L. (2006). Goodman & Gilman's the Pharmacological Basis of Therapeutics, eleventh edition, The McGraw-Hill Companies Inc., United States of America, pp.1634-1638.
 
Cave, M., Appana, S., Patel, M., Falkner, K.C., McClain, C.J. & Brock, G. (2010). Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults. Environ. Health Perspect. 118, 1735-1742.
https://doi.org/10.1289/ehp.1002720
PMid:21126940 PMCid:PMC3002193
 
Chen, C.J., Wang, S.L., Chiou, J.M., Tseng, C.H., Chiou, H.Y., Hsueh, Y.M., Chen, S.Y., Wu, M.M. & Lai, M.S. (2007). Arsenic and diabetes and hypertension in human populations: a review. Toxicol. Appl. Pharmacol. 222, 298-304.
https://doi.org/10.1016/j.taap.2006.12.032
PMid:17307211
 
Chen, Y.W., Yang, C.Y., Huang, C.F., Hung, D.Z., Leung, Y.M. & Liu, S.H. (2009). Heavy metals, islet function and diabetes development. Islets. 1, 169-176.
https://doi.org/10.4161/isl.1.3.9262
PMid:21099269
 
Coban, T.A., Senturk, M., Ciftci, M. & Kufrevioglu, O.I. (2007). Effects of some metal ions on human erythrocyte glutathione reductase: an in vitro study. Protein Pept. Lett.14, 1027-1030.
https://doi.org/10.2174/092986607782541060
PMid:18221002
 
Fossati, P., Prencipe, L. & Berti, G. (1980). Use of 3,5-dichloro-2-hydroxy benzene sulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26, 227-231.
https://doi.org/10.1093/clinchem/26.2.0227
https://doi.org/10.1093/clinchem/26.2.227
PMid:7353268
 
Heinegaard, D. & Tinderstrom, G. (1973). Determination of serum creatinine by a direct colorimetric method. Clin. Chim. Acta. 43, 305-310.
https://doi.org/10.1016/0009-8981(73)90466-X
 
Hunaiti, A.A. & Soud, M. (2000). Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood. Sci. Total Environ. 248, 45-50.
https://doi.org/10.1016/S0048-9697(99)00548-3
 
Kolachi, N.F., Kazi, T.G., Afridi, H.I., Kazi, N., Khan, S., Kandhro, G.A., Shah, A.Q., Baig, J.A., Wadhwa, S.K., & Shah, F., Jamali, M.K. & Arain, M. B. (2011). Status of toxic metals in biological samples of diabetic mothers and their neonates. Biol. Trace Elem. Res. 143, 196-212.
https://doi.org/10.1007/s12011-010-8879-7
PMid:20963639
 
Larsen, K. (1972). Creatinine assay by a reaction-kinetic principle. Clin. Chim. Acta. 41, 209-217.
https://doi.org/10.1016/0009-8981(72)90513-X
 
Lee, D., Lim, J., Song, K., Boo, Y. & Jacobs, D. (2006). Graded associations of blood lead and urinary cadmium concentrations with oxidative-stress-related markers in the U.S. population: Results from the third national health and nutrition examination survey. Environ. Health Perspect. 114, 350-354.
https://doi.org/10.1289/ehp.8518
PMid:16507456 PMCid:PMC1392227
 
Leff, T., Stemmer, P., Tyrrell, J. & Jog, R. 2018. Review on diabetes and exposure to environmental lead (Pb). Toxics. 6, 53-66.
https://doi.org/10.3390/toxics6030054
PMid:30200608 PMCid:PMC6161143
 
Moon, S.S. (2013). Association of lead, mercury and cadmium with diabetes in the Korean population: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Diabet. Med. 30, e143-e148.
https://doi.org/10.1111/dme.12103
PMid:23278294
 
Padilla, M.A., Elobeid, M., Ruden, D.M. & Allison, D.B. (2010). An examination of the association of selected toxic metals with total and central obesity indices. Int. J. Environ. Res. Public Health. 7, 3332-3347.
https://doi.org/10.3390/ijerph7093332
PMid:20948927 PMCid:PMC2954548
 
Plosker, G. L. (2012). Dapagliflozin: a review of its use in type 2 diabetes mellitus. Drugs 72, 2289-2312.
https://doi.org/10.2165/11209910-000000000-00000
PMid:23170914
 
Ris, M.D., Dietrich, K.N., Succop, P.A., Berger, O.G. & Bornschein, R.L. (2004). Early exposure to lead and neuropsychological outcome in adolescence. J. Int. Neuropsychol. Soc. 10, 261-270.
https://doi.org/10.1017/S1355617704102154
PMid:15012846
 
Searle, A.K., Baghurst, P.A., van Hooff, M., Sawyer, M.G., Sim, M.R., Galletly, C., Clark, L.S. & McFarlane, A.C. (2014). Tracing the long-term legacy of childhood lead exposure: A review of three decades of the port Pirie cohort study. Neurotoxicol. 43, 46-56.
https://doi.org/10.1016/j.neuro.2014.04.004
PMid:24785378
 
Surkan, P.J., Zhang, A., Trachtenberg, F., Daniel, D.B., McKinlay, S. & Bellinger, D.C. (2007). Neuropsychological function in children with blood lead levels <10 micro g/dL. Neurotoxicol. 28, 1170-1177.
https://doi.org/10.1016/j.neuro.2007.07.007
PMid:17868887 PMCid:PMC2276844
 
Tsaih, S.W., Korrick, S. & Schwartzetal, J. (2004). Lead, diabetes, hypertension, and renal function: the normative aging study. Environ. Health Perspect. 112, 1178-1182.
https://doi.org/10.1289/ehp.7024
PMid:15289163 PMCid:PMC1247478
 
Zhai, H., Chen, C., Wang, N., Chen, Y., Nie, X., Han, B., Li, Q., Xia, F. & Lu, Y. (2017). Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze river delta region of China in the context of rapid urbanization. Environ. Health. 16, 93-100.
https://doi.org/10.1186/s12940-017-0304-7
PMid:28859656 PMCid:PMC5580229

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



10
Save
0
Citation
849
View
1
Share