Study of the Effects of Complexation of Lead with Metformin, Glimepiride, Vildagliptin and Dapagliflozin in Mice Model
Fahima Aktar, Md. Zakir Sultan, Mohammad A. Rashid
Microbial Bioactives 3(1) 125-133 https://doi.org/10.25163/microbbioacts.31210910822111120
Submitted: 08 October 2020 Revised: 22 October 2020 Published: 11 November 2020
Abstract
Lead is abundant in the air, water and soil as a pollutant. It is sometimes consumed by humans in excessive amounts, which can lead to toxicity in the body or may interact with soluble drugs, thus altering their therapeutic efficacy. In this study, four antidiabetic drugs were synthesized to form a complex with metallic lead at different conditions. The formation of four complexes viz. Pb-metformin, Pb-glimepiride, Pb-vildagliptin, and Pb-dapagliflozin was established and confirmed by TLC, DSC, TGA and FT-IR data analysis. The physiological effects of these complexes was then examined using a mice model. After treatment, blood glucose, serum creatinine and uric acid were measured and histopathology of hepatic and nephrotic tissues were studied. Control treatments of metformin, glimepiride, vildagliptin and dapagliflozin reduced blood glucose levels in mice from 31.54 to 19.02 mmol/L, 30.24 to 17.20 mmol/L, 31.50 to 19.70 mmol/L and 30.37 to 17.60 mmol/L, respectively, whereas Pb-met, Pb-glim, Pb-vilda, and Pb-dapa slightly increased blood glucose levels compared to control after 14 days of treatment from 30.60 to 25.82 mmol/L, 30.22 to 29.23 mmol/L, 31.93 to 25.32 mmol/L and 32.25 to 29.32 mmol/L, respectively. The serum creatinine levels increased from 3.38, 3.96, 3.60 and 3.42 mg/dL on metformin, glimepiride, vildagliptin and dagagliflozin respectively to 4.57, 5.36, 5.21 and 5.24 mg/dL on the lead-complex forms of those respective medications. Similarly, the serum acid levels also increased from 42.91, 44.83, 40.21 and 41.49 mg/dL on metformin, glimepiride, vildagliptin and dagagliflozin respectively to 53.13, 57.40, 49.36 and 53.32 mg/dL on the lead-complex forms of those respective medications. Both high creatinine and uric acid level after treatment with lead complexes indicated nephrotic toxicity.
Keywords: Antidiabetic drugs, complexation, Lead, Creatinine, Uric acid
References
Afridi, H.I., Kazi, T.G., Kazi, N., Jamali, M.K., Arain, M.B.,Jalbani, N., Baig, J.A. & Sarfraz, R.A. (2008). Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabet. Res. Clin. Pract. 80, 280-288. https://doi.org/10.1016/j.diabres.2007.12.021 PMid:18276029 |
||||
Ahren, B., Schweizer, A., Dejager, S., Villhauer, E. B., Dunning, B. E. & Foley, J. E. (2011). Mechanisms of action of the dipeptidyl peptidase-4 inhibitor vildagliptin in humans. Diabet. Obes. Metabol. 13, 775-783. https://doi.org/10.1111/j.1463-1326.2011.01414.x PMid:21507182 |
||||
Barham, D. & Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 97, 142-145. https://doi.org/10.1039/an9729700142 PMid:5037807 |
||||
Bener, A., Obineche, E., Gillett, M., Pasha, M.A. & Bishawi, B. (2001). Association between blood levels of lead, blood pressure and risk of diabetes and heart disease in workers. Int. Arch. Occup. Environ. Health. 74, 375-378. https://doi.org/10.1007/s004200100231 PMid:11516073 |
||||
Bokara, K.K., Blaylock, I., Denise, S.B., Bettaiya, R., Rajanna, S. & Yallapragada, P.R. (2009). Influence of lead acetate on glutathione and its related enzymes in different regions of rat brain. J. Appl. Toxicol. 29, 452-458. https://doi.org/10.1002/jat.1423 PMid:19263481 |
||||
Brunton, L. L., Lazo, J. S. & Parker. K. L. (2006). Goodman & Gilman's the Pharmacological Basis of Therapeutics, eleventh edition, The McGraw-Hill Companies Inc., United States of America, pp.1634-1638. | ||||
Cave, M., Appana, S., Patel, M., Falkner, K.C., McClain, C.J. & Brock, G. (2010). Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults. Environ. Health Perspect. 118, 1735-1742. https://doi.org/10.1289/ehp.1002720 PMid:21126940 PMCid:PMC3002193 |
||||
Chen, C.J., Wang, S.L., Chiou, J.M., Tseng, C.H., Chiou, H.Y., Hsueh, Y.M., Chen, S.Y., Wu, M.M. & Lai, M.S. (2007). Arsenic and diabetes and hypertension in human populations: a review. Toxicol. Appl. Pharmacol. 222, 298-304. https://doi.org/10.1016/j.taap.2006.12.032 PMid:17307211 |
||||
Chen, Y.W., Yang, C.Y., Huang, C.F., Hung, D.Z., Leung, Y.M. & Liu, S.H. (2009). Heavy metals, islet function and diabetes development. Islets. 1, 169-176. https://doi.org/10.4161/isl.1.3.9262 PMid:21099269 |
||||
Coban, T.A., Senturk, M., Ciftci, M. & Kufrevioglu, O.I. (2007). Effects of some metal ions on human erythrocyte glutathione reductase: an in vitro study. Protein Pept. Lett.14, 1027-1030. https://doi.org/10.2174/092986607782541060 PMid:18221002 |
||||
Fossati, P., Prencipe, L. & Berti, G. (1980). Use of 3,5-dichloro-2-hydroxy benzene sulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin. Chem. 26, 227-231. https://doi.org/10.1093/clinchem/26.2.0227 https://doi.org/10.1093/clinchem/26.2.227 PMid:7353268 |
||||
Heinegaard, D. & Tinderstrom, G. (1973). Determination of serum creatinine by a direct colorimetric method. Clin. Chim. Acta. 43, 305-310. https://doi.org/10.1016/0009-8981(73)90466-X |
||||
Hunaiti, A.A. & Soud, M. (2000). Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood. Sci. Total Environ. 248, 45-50. https://doi.org/10.1016/S0048-9697(99)00548-3 |
||||
Kolachi, N.F., Kazi, T.G., Afridi, H.I., Kazi, N., Khan, S., Kandhro, G.A., Shah, A.Q., Baig, J.A., Wadhwa, S.K., & Shah, F., Jamali, M.K. & Arain, M. B. (2011). Status of toxic metals in biological samples of diabetic mothers and their neonates. Biol. Trace Elem. Res. 143, 196-212. https://doi.org/10.1007/s12011-010-8879-7 PMid:20963639 |
||||
Larsen, K. (1972). Creatinine assay by a reaction-kinetic principle. Clin. Chim. Acta. 41, 209-217. https://doi.org/10.1016/0009-8981(72)90513-X |
||||
Lee, D., Lim, J., Song, K., Boo, Y. & Jacobs, D. (2006). Graded associations of blood lead and urinary cadmium concentrations with oxidative-stress-related markers in the U.S. population: Results from the third national health and nutrition examination survey. Environ. Health Perspect. 114, 350-354. https://doi.org/10.1289/ehp.8518 PMid:16507456 PMCid:PMC1392227 |
||||
Leff, T., Stemmer, P., Tyrrell, J. & Jog, R. 2018. Review on diabetes and exposure to environmental lead (Pb). Toxics. 6, 53-66. https://doi.org/10.3390/toxics6030054 PMid:30200608 PMCid:PMC6161143 |
||||
Moon, S.S. (2013). Association of lead, mercury and cadmium with diabetes in the Korean population: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Diabet. Med. 30, e143-e148. https://doi.org/10.1111/dme.12103 PMid:23278294 |
||||
Padilla, M.A., Elobeid, M., Ruden, D.M. & Allison, D.B. (2010). An examination of the association of selected toxic metals with total and central obesity indices. Int. J. Environ. Res. Public Health. 7, 3332-3347. https://doi.org/10.3390/ijerph7093332 PMid:20948927 PMCid:PMC2954548 |
||||
Plosker, G. L. (2012). Dapagliflozin: a review of its use in type 2 diabetes mellitus. Drugs 72, 2289-2312. https://doi.org/10.2165/11209910-000000000-00000 PMid:23170914 |
||||
Ris, M.D., Dietrich, K.N., Succop, P.A., Berger, O.G. & Bornschein, R.L. (2004). Early exposure to lead and neuropsychological outcome in adolescence. J. Int. Neuropsychol. Soc. 10, 261-270. https://doi.org/10.1017/S1355617704102154 PMid:15012846 |
||||
Searle, A.K., Baghurst, P.A., van Hooff, M., Sawyer, M.G., Sim, M.R., Galletly, C., Clark, L.S. & McFarlane, A.C. (2014). Tracing the long-term legacy of childhood lead exposure: A review of three decades of the port Pirie cohort study. Neurotoxicol. 43, 46-56. https://doi.org/10.1016/j.neuro.2014.04.004 PMid:24785378 |
||||
Surkan, P.J., Zhang, A., Trachtenberg, F., Daniel, D.B., McKinlay, S. & Bellinger, D.C. (2007). Neuropsychological function in children with blood lead levels <10 micro g/dL. Neurotoxicol. 28, 1170-1177. https://doi.org/10.1016/j.neuro.2007.07.007 PMid:17868887 PMCid:PMC2276844 |
||||
Tsaih, S.W., Korrick, S. & Schwartzetal, J. (2004). Lead, diabetes, hypertension, and renal function: the normative aging study. Environ. Health Perspect. 112, 1178-1182. https://doi.org/10.1289/ehp.7024 PMid:15289163 PMCid:PMC1247478 |
||||
Zhai, H., Chen, C., Wang, N., Chen, Y., Nie, X., Han, B., Li, Q., Xia, F. & Lu, Y. (2017). Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze river delta region of China in the context of rapid urbanization. Environ. Health. 16, 93-100. https://doi.org/10.1186/s12940-017-0304-7 PMid:28859656 PMCid:PMC5580229 |
View Dimensions
View Altmetric
Save
Citation
View
Share