REVIEWS   (Open Access)

Microbial degradation, recycling and upcycling of PET wastes: A Mini-Review

Debananda S. Ningthoujam1*

+ Author Affiliations

Microbial Bioactives 5(2) 219-224 https://doi.org/10.25163/microbbioacts.526329

Submitted: 06 December 2022  Revised: 27 December 2022  Published: 29 December 2022 

Ecofriendly degradation of PET by genetically engineered microbes

Abstract

More than 350 million tons of plastics are produced globally per annum. The major kinds of plastics include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyurethane (PU), polyvinyl chloride (PVC), and polyethylene terephthalate (PET). PET is one of the predominant plastics used in textiles and packaging. PET wastes have been recycled using mechanical and chemical methods. However, these techniques are costly, non-eco-friendly, and may generate toxic by-products. Hence, intensive research is underway to develop biological methods of PET depolymerization. Several PET-digesting enzymes have been isolated from bacteria, actinobacteria and fungi. However, bacterial enzymes suffer from low efficiency, slow reaction rates, recalcitrance to high crystallinity PET, and lack of robustness to range of pH and temperatures. In contrast, actinobacterial enzymes show higher thermostability but they also have their own limitations. More recently, improved enzymes have been produced using rational, AI directed and even directed evolution strategies. Some of these enzymes have demonstrated rapid depolymerization of low-to-medium crystallinity PET wastes. A French group has shown efficient depolymerization of PET bottles and recycling into virgin PET bottles. A British team has produced food, vanillin, from PET waste using an engineered microbe for the first time and other groups have shown the feasibility of upcycling (valorization) of PET waste into various value-added products. This minireview will highlight the recent developments in microbial degradation, recycling, and upcycling of PET wastes.

Keywords: Polyethylene terephthalate, PET, enzyme engineering, recycling, upcycling, Ideonella sakaiensis, LCC.

References

Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., El Omari, K., Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Woodcock, H. L., … Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, 115(19). https://doi.org/10.1073/pnas.1718804115

Bell, E. L., Smithson, R., Kilbride, S., Foster, J., Hardy, F. J., Ramachandran, S., Tedstone, A. A., Haigh, S. J., Garforth, A. A., Day, P. J. R., Levy, C., Shaver, M. P., & Green, A. P. (2022). Directed evolution of an efficient and thermostable PET depolymerase. Nature Catalysis, 5(8), 673–681. https://doi.org/10.1038/s41929-022-00821-3

Billig, S., Oeser, T., Birkemeyer, C., & Zimmermann, W. (2010). Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Applied Microbiology and Biotechnology, 87(5), 1753–1764. https://doi.org/10.1007/s00253-010-2635-y

Biundo, A., Reich, J., Ribitsch, D., & Guebitz, G. M. (2018). Synergistic effect of mutagenesis and truncation to improve a polyesterase from Clostridium botulinum for polyester hydrolysis. Scientific Reports, 8(1), 3745. https://doi.org/10.1038/s41598-018-21825-9

Bollinger, A., Thies, S., Knieps-Grünhagen, E., Gertzen, C., Kobus, S., Höppner, A., Ferrer, M., Gohlke, H., Smits, S. H. J., & Jaeger, K.-E. (2020). A Novel Polyester Hydrolase From the Marine Bacterium Pseudomonas aestusnigri – Structural and Functional Insights. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00114

Carr, C. M., Clarke, D. J., & Dobson, A. D. W. (2020). Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.571265

Cui, Q., Cheng, H., Xiong, R., Zhang, G., Du, R., Anantpadma, M., Davey, R. A., & Rong, L. (2018). Identification of diaryl-quinoline compounds as entry inhibitors of ebola virus. Viruses, 10(12). https://doi.org/10.3390/v10120678

Danso, D., Schmeisser, C., Chow, J., Zimmermann, W., Wei, R., Leggewie, C., Li, X., Hazen, T., & Streit, W. R. (2018). New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Applied and Environmental Microbiology, 84(8). https://doi.org/10.1128/AEM.02773-17

Herrero Acero, E., Ribitsch, D., Steinkellner, G., Gruber, K., Greimel, K., Eiteljoerg, I., Trotscha, E., Wei, R., Zimmermann, W., Zinn, M., Cavaco-Paulo, A., Freddi, G., Schwab, H., & Guebitz, G. (2011). Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules, 44(12), 4632–4640. https://doi.org/10.1021/ma200949p

Joo, S., Cho, I. J., Seo, H., Son, H. F., Sagong, H.-Y., Shin, T. J., Choi, S. Y., Lee, S. Y., & Kim, K.-J. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9(1), 382. https://doi.org/10.1038/s41467-018-02881-1

Kawabata, T., Oda, M., & Kawai, F. (2017). Mutational analysis of cutinase-like enzyme, Cut190, based on the 3D docking structure with model compounds of polyethylene terephthalate. Journal of Bioscience and Bioengineering, 124(1), 28–35. https://doi.org/10.1016/j.jbiosc.2017.02.007

Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., Mizushima, H., Miyakawa, T., & Tanokura, M. (2014). A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 98(24), 10053–10064. https://doi.org/10.1007/s00253-014-5860-y

Kim, H. T., Kim, J. K., Cha, H. G., Kang, M. J., Lee, H. S., Khang, T. U., Yun, E. J., Lee, D.-H., Song, B. K., Park, S. J., Joo, J. C., & Kim, K. H. (2019). Biological Valorization of Poly(ethylene terephthalate) Monomers for Upcycling Waste PET. ACS Sustainable Chemistry & Engineering, 7(24), 19396–19406. https://doi.org/10.1021/acssuschemeng.9b03908

Lilli Manolis Sherman. (2022). “First” Bacteria to Upcycle Single-Use PET Heading to Space. Plastic Technology. https://www.ptonline.com/blog/post/first-bacteria-to-upcycle-single-use-pet-heading-to-space

Liu, P., Zheng, Y., Yuan, Y., Zhang, T., Li, Q., Liang, Q., Su, T., & Qi, Q. (2022). Valorization of Polyethylene Terephthalate to Muconic Acid by Engineering Pseudomonas Putida. International Journal of Molecular Sciences, 23(19), 10997. https://doi.org/10.3390/ijms231910997

Lu, H., Diaz, D. J., Czarnecki, N. J., Zhu, C., Kim, W., Shroff, R., Acosta, D. J., Alexander, B. R., Cole, H. O., Zhang, Y., Lynd, N. A., Ellington, A. D., & Alper, H. S. (2022). Machine learning-aided engineering of hydrolases for PET depolymerization. Nature, 604(7907), 662–667. https://doi.org/10.1038/s41586-022-04599-z

Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., Zhou, X., & Yuan, Y. (2018). Enhanced Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering. Engineering, 4(6), 888–893. https://doi.org/10.1016/j.eng.2018.09.007

Müller, R.-J., Schrader, H., Profe, J., Dresler, K., & Deckwer, W.-D. (2005). Enzymatic Degradation of Poly(ethylene terephthalate): Rapid Hydrolyse using a Hydrolase fromT. fusca. Macromolecular Rapid Communications, 26(17), 1400–1405. https://doi.org/10.1002/marc.200500410

Palm, G. J., Reisky, L., Böttcher, D., Müller, H., Michels, E. A. P., Walczak, M. C., Berndt, L., Weiss, M. S., Bornscheuer, U. T., & Weber, G. (2019). Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nature Communications, 10(1), 1717. https://doi.org/10.1038/s41467-019-09326-3

Ribitsch, D., Acero, E. H., Greimel, K., Eiteljoerg, I., Trotscha, E., Freddi, G., Schwab, H., & Guebitz, G. M. (2012). Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis. Biocatalysis and Biotransformation, 30(1), 2–9. https://doi.org/10.3109/10242422.2012.644435

Ribitsch, D., Herrero Acero, E., Greimel, K., Dellacher, A., Zitzenbacher, S., Marold, A., Rodriguez, R. D., Steinkellner, G., Gruber, K., Schwab, H., & Guebitz, G. M. (2012). A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA). Polymers, 4(1), 617–629. https://doi.org/10.3390/polym4010617

Ribitsch, D., Heumann, S., Trotscha, E., Herrero Acero, E., Greimel, K., Leber, R., Birner-Gruenberger, R., Deller, S., Eiteljoerg, I., Remler, P., Weber, T., Siegert, P., Maurer, K.-H., Donelli, I., Freddi, G., Schwab, H., & Guebitz, G. M. (2011). Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Biotechnology Progress, 27(4), 951–960. https://doi.org/10.1002/btpr.610

Sadler, J. C., & Wallace, S. (2021). Microbial synthesis of vanillin from waste poly(ethylene terephthalate). Green Chemistry, 23(13), 4665–4672. https://doi.org/10.1039/D1GC00931A

Sulaiman, S., Yamato, S., Kanaya, E., Kim, J.-J., Koga, Y., Takano, K., & Kanaya, S. (2012). Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach. Applied and Environmental Microbiology, 78(5), 1556–1562. https://doi.org/10.1128/AEM.06725-11

Then, J., Wei, R., Oeser, T., Barth, M., Belisário-Ferrari, M. R., Schmidt, J., & Zimmermann, W. (2015). Ca 2+ and Mg 2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnology Journal, 10(4), 592–598. https://doi.org/10.1002/biot.201400620

Thumarat, U., Nakamura, R., Kawabata, T., Suzuki, H., & Kawai, F. (2012). Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119. Applied Microbiology and Biotechnology, 95(2), 419–430. https://doi.org/10.1007/s00253-011-3781-6

Tiso, T., Narancic, T., Wei, R., Pollet, E., Beagan, N., Schröder, K., Honak, A., Jiang, M., Kenny, S. T., Wierckx, N., Perrin, R., Avérous, L., Zimmermann, W., O’Connor, K., & Blank, L. M. (2021). Towards bio-upcycling of polyethylene terephthalate. Metabolic Engineering, 66, 167–178. https://doi.org/10.1016/j.ymben.2021.03.011

Tournier, V., Topham, C. M., Gilles, A., David, B., Folgoas, C., Moya-Leclair, E., Kamionka, E., Desrousseaux, M.-L., Texier, H., Gavalda, S., Cot, M., Guémard, E., Dalibey, M., Nomme, J., Cioci, G., Barbe, S., Chateau, M., André, I., Duquesne, S., & Marty, A. (2020). An engineered PET depolymerase to break down and recycle plastic bottles. Nature, 580(7802), 216–219. https://doi.org/10.1038/s41586-020-2149-4

Wei, R., Oeser, T., Then, J., Kühn, N., Barth, M., Schmidt, J., & Zimmermann, W. (2014). Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB Express, 4(1), 44. https://doi.org/10.1186/s13568-014-0044-9

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278), 1196–1199. https://doi.org/10.1126/science.aad6359

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
810
View
0
Share