RESEARCH ARTICLE   (Open Access)

Next-Generation Probiotics - The Future of Biotherapeutics

Md. Fakruddina*, Md. Asaduzzaman Shishirb, Zainab Yousufa, Md. Shamsuddin Sultan Khanc

+ Author Affiliations

Microbial Bioactives 5(1) 156-163 https://doi.org/10.25163/microbbioacts.514309

Submitted: 09 April 2022  Revised: 30 May 2022  Published: 20 June 2022 

Probiotics as potential biotherapeutic agents

Abstract

Lactic acid bacteria, most of which are represented by the genera Lactobacilli and Bifidobacteria, have been extensively investigated for their role as probiotics and have also been used in food items due to their advantageous metabolic properties in manufacturing fermented food. To expand the spectrum of probiotics, there is currently a great deal of interest in researching different microorganisms with potential health benefits for humans. These next-generation probiotics are bacteria that mostly come from the Bacteroides, Clostridium, Faecalibacterium, and Akkermansia genera. However, studying these microbes as probiotics and using them in food production can become extremely problematic. Understanding its efficacy and safety for consumption, as well as its application in the production of new food items and industrial-scale food production, are among some of the challenges faced. The next generation of probiotics has become a major topic in scientific research as well as the food sector and poses new obstacles as it gets studied further.

References

Adak, A., & Khan, M.R. (2019). An insight into gut microbiota and its functionalities. Cellular & Molecular Life Sciences, 76(3), 473-493. https://doi.org/10.1007/s00018-018-2943-4

PMid:30317530

Ahmed, M.M., Chowdhury, A., Malaker, R., Hossain, M.N., Fakruddin, M., & Noor, R. (2013). Bacteriocin Profiling of Probiotic Lactobacillus spp. Isolated from Yoghurt. International Journal of Pharmaceutical Chemistry, 3(3), 50-6.

Andrade, J.C., Almeida, D., Domingos, M., Seabra, C.L., Machado, D., Freitas, A.C., & Gomes, A.M. (2020). Commensal Obligate Anaerobic Bacteria and Health: Production, Storage, and Delivery Strategies. Frontiers in Bioengineering and Biotechnology, 8, 550.

https://doi.org/10.3389/fbioe.2020.00550

PMid:32582673 PMCid:PMC7291883

Anvar, A. A., & Nowruzi, B. (2021). Bioactive Properties of Spirulina: A Review. Microbial Bioactives, 4(1), 134-142. https://doi.org/10.25163/microbbioacts.412117B0719110521

Bilen, M., Dufour, J.C., Lagier, J.C., Cadoret, F., Daoud, Z., Dubourg, G., & Raoult, D. (2018). The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome, 6, 94. https://doi.org/10.1186/s40168-018-0485-5

PMid:29793532 PMCid:PMC5966928

Bottacini, F., van Sinderen, D., & Ventura, M. (2017). Omics of bifidobacteria: research and insights into their health promoting activities. Biochemistry Journal, 474, 4137e52.

https://doi.org/10.1042/BCJ20160756

PMid:29212851

Brodmann, T., Endo, A., Gueimonde, M., Vinderola, G., Kneifel, W., De Vos, W.M., Salminen, S. & Gómez-Gallego, C. (2017). Safety of Novel Microbes for Human Consumption: Practical Examples of Assessment in the European Union. Frontiers in Microbiology, 8, 1725.

https://doi.org/10.3389/fmicb.2017.01725

PMid:28955311 PMCid:PMC5601064

Breton, J., Galmiche, M., & Dechelotte, P. (2022). Dysbiotic Gut Bacteria in Obesity: An Overview of the Metabolic Mechanisms and Therapeutic Perspectives of Next-Generation Probiotics. Microorganisms, 10(2), 452.

https://doi.org/10.3390/microorganisms10020452

PMid:35208906 PMCid:PMC8877435

Bron, P.A., Kleerebezem, M., Brummer, R.-J., Cani. P.D., Mercenier, A., MacDonald, T.T., Garcia-Rodenas, C.L., & Wells, J.M. (2017). Can probiotics modulate human disease by impacting intestinal barrier function? British Journal of Nutrition, 117(1), 93-107.

https://doi.org/10.1017/S0007114516004037

PMid:28102115 PMCid:PMC5297585

 Bunesova, V., Lacroix, C. & Schwab, C. (2018). Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microbial Ecology, 75, 228-238.

https://doi.org/10.1007/s00248-017-1037-4

PMid:28721502

Byndloss, M.X., Olsan, E.E., Rivera- Chavez, F., Tiffany, C.R., Cevallos, S.A., Lokken, K.L.,………., Baumler, A.J. (2017). Microbiota activated PPARgamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science, 357, 570e5.

https://doi.org/10.1126/science.aam9949

PMid:28798125 PMCid:PMC5642957

 Cani, P.D., & de Vos, W.M. (2017). Next-generation beneficial microbes: the case of Akkermansia muciniphila. Frontiers in Microbiology, 8, 1765.

https://doi.org/10.3389/fmicb.2017.01765

PMid:29018410 PMCid:PMC5614963

Carlsson, A.H., Yakymenko, O., Olivier, I., Håkansson, F., Postma, E., Keita, Å.V., & Söderholm, J.D. (2013). Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scandinavian Journal of Gastroenterology, 48, 1136-1144.

https://doi.org/10.3109/00365521.2013.828773

PMid:23971882

Cassir, N., Benamar, S., & La Scola, B. (2016). Clostridium butyricum: from beneficial to a new emerging pathogen. Clinical Microbiology and Infection, 22, 37-45.

https://doi.org/10.1016/j.cmi.2015.10.014

PMid:26493849

Chang, C.-J., Lin, C.-S., Lu, C.-C., Martel, J., Ko, Y.-F., Ojcius, D.M.,…….., Lai, H.-C. (2015). Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nature Communications, 6, 7489.

https://doi.org/10.1038/ncomms8489

PMid:26102296 PMCid:PMC4557287

 Chang, C.J., Lin, T.L., Tsai, Y.L.,….., Lai, H.-C. (2019). Next generation probiotics in disease amelioration. Journal of Food & Drug Analysis, 27(3), 615-22.

https://doi.org/10.1016/j.jfda.2018.12.011

PMid:31324278

 Chaput, N., Lepage, P., Coutzac, C.,……., Carbonnel, F. (2017). Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Annals of Oncology, 28, 1368e79.

https://doi.org/10.1093/annonc/mdx363.021

https://doi.org/10.1093/annonc/mdx108

PMid:28368458

Chen, D., Jin, D., Huang, S., Wu, J., Xu, M., Liu, T., Dong, W., Liu, X., Wang, S., Zhong, W., Liu, Y., Jiang, R., Piao, M., Wang, B., & Cao, H. (2020). Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Letters, 469, 456-467.

https://doi.org/10.1016/j.canlet.2019.11.019

PMid:31734354

 

Chowdhury, A., Hossain, M.N., Mostazir, N.J., Fakruddin, M., Billah, M.M., & Ahmed, M.M. (2012). Screening of Lactobacillus spp. From buffalo yoghurt for probiotic and antibacterial activity. Journal of Bacteriology and Parasitology, 3, 156.

https://doi.org/10.4172/2155-9597.1000156

Clarke, G., Stilling, R.M., Kennedy, P.J., Stanton, C., Cryan, J.F., & Dinan, T.G. (2014). Minireview: gut microbiota: the neglected endocrine organ. Molecular Endocrinology, 28, 1221e38.

https://doi.org/10.1210/me.2014-1108

PMid:24892638 PMCid:PMC5414803

Collado, M. C., Derrien, M., Isolauri, E., De Vos, W. M., & Salminen, S. (2007). Intestinal Integrity and Akkermansia muciniphila, a Mucin-Degrading Member of the Intestinal Microbiota Present in Infants, Adults, and the Elderly. Applied and Environmental Microbiology, 73, 7767.

https://doi.org/10.1128/AEM.01477-07

PMid:17933936 PMCid:PMC2168041

Cunningham, M., Azcarate-Peril, M.A., Barnard, A., …….. , Gibson, G.R. (2021). Shaping the future of probiotics and prebiotics. Trends in Microbiology, 29(8), 667-685.

https://doi.org/10.1016/j.tim.2021.01.003

PMid:33551269

De Vadder, F., Kovatcheva-Datchary, P., Zitoun, C., Duchampt, A., Backhed, F., & Mithieux, G. (2016). Microbiota- produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metabolism, 24, 151e7.

https://doi.org/10.1016/j.cmet.2016.06.013

PMid:27411015

Derrien, M., Belzer, C., & De Vos, W. M. (2017). Akkermansia muciniphila and its role in regulating host functions. Microbial Pathogenesis, 106, 171-181.

https://doi.org/10.1016/j.micpath.2016.02.005

PMid:26875998

Derrien, M., Vaughan, E.E., Plugge, C.M., & De Vos, W.M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic & Evolutionary Microbiology, 54, 1469-1476. https://doi.org/10.1099/ijs.0.02873-0

PMid:15388697

Douillard, F.P., & de Vos, W.M. (2019). Biotechnology of health-promoting bacteria. Biotechnology Advances, 37(6), 107369. https://doi.org/10.1016/j.biotechadv.2019.03.008

PMid:30876799

Duncan, S.H., Louis, P., & Flint, H.J. (2004). Lactate-Utilizing Bacteria, Isolated from Human Feces, That Produce Butyrate as a Major Fermentation Product. Applied and Environmental Microbiology, 70, 5810. https://doi.org/10.1128/AEM.70.10.5810-5817.2004

PMid:15466518 PMCid:PMC522113

 Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C., & Schwab, C. (2016). The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Frontiers in Microbiology, 7, 713-713. https://doi.org/10.3389/fmicb.2016.00713

PMid:27242734 PMCid:PMC4871866

 Everard, A., Belzer, C., Geurts, L.,………, Cani, P.D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences, 110, 9066e71. https://doi.org/10.1073/pnas.1219451110

PMid:23671105 PMCid:PMC3670398

 Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., De Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences, 110(22), 9066. https://doi.org/10.1073/pnas.1219451110

PMid:23671105 PMCid:PMC3670398

Fakruddin, M., Hossain, M.N., & Ahmed M.M. (2017). Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complementary & Alternative Medicine, 17, 64. https://doi.org/10.1186/s12906-017-1591-9

PMid:28109187 PMCid:PMC5251302

Ferdous, U. T., Shishir, M. A., Khan, S. N., & Hoq, M. M. (2018). Bacillus spp.: Attractive Sources of Anti-cancer and Anti-proliferative Biomolecules. Microbial Bioactives, 1(1), E033-E045.

https://doi.org/10.25163/microbbioacts.11005B0408130818

Fernández-Murga, M.L., & Sanz, Y. (2016). Safety Assessment of Bacteroides uniformis CECT 7771 Isolated from Stools of Healthy Breast-Fed Infants. PLOS ONE, 11, e0145503.

https://doi.org/10.1371/journal.pone.0145503

PMid:26784747 PMCid:PMC4718450

 Ferreira-Halder, C.V., Faria, A.V.d.S., & Andrade, S.S. (2017). Action and function of Faecalibacterium prausnitzii in health and disease. Best Practice & Research Clinical Gastroenterology, 31, 643-648. https://doi.org/10.1016/j.bpg.2017.09.011

PMid:29566907

 Goloshchapov, O.V., Bakin, E.A., Kucher, M.A.,……., Chukhlovin, A.B. (2020). Bacteroides fragilis is a potential marker of effective microbiota transplantation in acute graft-versus-host disease treatment. Cellular Therapy and Transplantation, 9(2), 47-59.

https://doi.org/10.18620/ctt-1866-8836-2020-9-2-47-59

Goodrich, J.K., Davenport, E.R., Beaumont, M.,……, Ley, R.E. (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host & Microbe, 19, 731e43.

https://doi.org/10.1016/j.chom.2016.04.017

PMid:27173935 PMCid:PMC4915943

 Goodrich, J.K., Waters, J.L., Poole, A.C.,…….., Ley, R.E. (2014). Human genetics shape the gut microbiome. Cell, 159, 789e99. https://doi.org/10.1016/j.cell.2014.09.053

PMid:25417156 PMCid:PMC4255478

 Gopalakrishnan, V., Spencer, C.N., Nezi, L.,…….., Wargo, J.A. (2018). Gut microbiome modulates response to anti- PD-1 immunotherapy in melanoma patients. Science, 359, 97e103.

https://doi.org/10.1126/science.aan4236

PMid:29097493 PMCid:PMC5827966

 Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J., & Brummer, R.J. (2008). Review article: the role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics, 27, 104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x

PMid:17973645

 Han, W., & Zhuang, X. (2021). Research progress on the next generation probiotic Akkermansia muciniphila in the intestine. Food Frontiers, 2, 443-448. https://doi.org/10.1002/fft2.87

He, X., Zhao, S., & Li, Y. (2021). Faecalibacterium prausnitzii: A next-generation probiotic in gut disease improvement. Canadian Journal of Infectious Diseases and Medical microbiology, id: 6666114. https://doi.org/10.1155/2021/6666114

https://doi.org/10.1155/2021/6666114

Heinken, A., Khan, M.T., Paglia, G., Rodionov, D.A., Harmsen, H.J.M., & Thiele, I. (2014). Functional Metabolic Map of a Beneficial Human Gut Microbe. Journal of Bacteriology, 196, 3289.

https://doi.org/10.1128/JB.01780-14

PMid:25002542 PMCid:PMC4135701

 Heintz-Buschart, A., Pandey, U., Wicke, T.,…….., Wilmes, P. (2018). The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behaviour disorder. Movement Disorders, 33, 88e98. https://doi.org/10.1002/mds.27105

PMid:28843021 PMCid:PMC5811909

 Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., & Sanders, M.E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514.

https://doi.org/10.1038/nrgastro.2014.66

PMid:24912386

 Husted, A.S., Trauelsen, M., Rudenko, O., Hjorth, S., & Schwartz, T.W. (2017). GPCR-mediated signaling of metabolites. Cell Metabolism, 25, 777e96.

https://doi.org/10.1016/j.cmet.2017.03.008

PMid:28380372

 Kazmierczak-Siedlecka, K., Skonieczna-Zydecka, K., Hupp, T., Duchnowska, R., Marek-Trzonkowska, N., & Polom, K. (2022). Next generation probiotics- do they open new therapeutic strategies for cancer patients? Gut Microbes, 14(1), e2035659. https://doi.org/10.1080/19490976.2022.2035659

PMid:35167406 PMCid:PMC8855854

 Kimura, I., Inoue, D., Hirano, K., & Tsujimoto, G. (2014). The SCFA receptor GPR43 and energy metabolism. Frontiers in Endocrinology, 5, 85. https://doi.org/10.3389/fendo.2014.00085

PMid:24926285 PMCid:PMC4046487

 Levy, M., Kolodziejczyk, A.A., Christoph, A.T., & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17, 219-232. https://doi.org/10.1038/nri.2017.7

PMid:28260787

 Li, C., Chen, X., Kou, L.,……, Xu, G.-X. (2010). Selenium-Bifidobacterium longum as a delivery system of endostatin for inhibition of pathogenic bacteria and selective regression of solid tumor. Experimental and Therapeutic Medicine, 1, 129e35. https://doi.org/10.3892/etm_00000022

PMid:23136605 PMCid:PMC3490391

 

Lin, T-L., Shu, C-C., Lai, W-F., Tzeng, C-M., Lai, H-C., & Lu, C-C. (2019). Investiture of next generation probiotics on amelioration of diseases- Strains do matter. Medicine in Microecology, 1-2, 100002. https://doi.org/10.1016/j.medmic.2019.100002 

Lopez-Moreno, A., Acuna, I., Torres-Sanchez, A., …….. , Aguilera, M. (2021). Next generation probiotics for neutralizing obesogenic effects: Taxa culturing searching strategies. Nutrients, 13, 1617. https://doi.org/10.3390/nu13051617

https://doi.org/10.3390/nu13051617

PMid:34065873 PMCid:PMC8151043

 Louis, P., Young, P., Holtrop, G., & Flint, H. (2009). Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environmental Microbiology, 12, 304-314.

https://doi.org/10.1111/j.1462-2920.2009.02066.x

PMid:19807780

 Lukiw, W.J. (2016). Bacteroides fragilis lipopolysaccharide and inflammatory signaling in alzheimer's disease. Frontiers in Microbiology, 7, 1544.

https://doi.org/10.3389/fmicb.2016.01544

PMid:27725817 PMCid:PMC5035737

 Miquel, S., Martin, R., Rossi, O.,……, Lengella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 16, 255e61.

https://doi.org/10.1016/j.mib.2013.06.003

PMid:23831042

 Miyaoka, T.M., Kanayama, M.M.W., Rei M.D., Hashioka, S.M.,……..., Horiguchi, J. (2018). Clostridium butyricum MIYAIRI 588 as Adjunctive Therapy for Treatment-Resistant Major Depressive Disorder: A Prospective Open-Label Trial. Clinical Neuropharmacology, 41, 151-155.

https://doi.org/10.1097/WNF.0000000000000299

PMid:30234616

 Nowruzi, B., Shishir, M. A., Porzani, S. J., & Ferdous, U. T. (2022). Exploring the Interactions between Algae and Bacteria. Mini Reviews in Medicinal Chemistry.

https://doi.org/10.2174/1389557522666220504141047

O'toole, P., Marchesi, J., & Hill, C. (2017). Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nature Microbiology, 2, 17057.

https://doi.org/10.1038/nmicrobiol.2017.57

PMid:28440276

 Olveira, G., & Gonzalez-Molero, I. (2016). An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinologia y Nutricion, 63, 482e94.

https://doi.org/10.1016/j.endoen.2016.10.011

Pesce, M., Seguella, L., Del Re, A.,……, Esposito, G. (2022). Next-generation probiotics for inflammatory bowel disease. International Journal of Molecular Sciences, 22, 5466.

https://doi.org/10.3390/ijms23105466

PMid:35628274 PMCid:PMC9141965

 Pitt, J.M., Vetizou, M., Boneca I.G., Lepage, P., Chamaillard, M., & Zitvogel, L. (2017). Enhancing the clinical coverage and anticancer efficacy of immune checkpoint blockade through manipulation of the gut microbiota. Oncoimmunology, 6, e1132137.

https://doi.org/10.1080/2162402X.2015.1132137

PMid:28197360 PMCid:PMC5283646

 Reunanen, J., Kainulainen, V., Huuskonen, L., Ottman, N., Belzer, C., Huhtinen, H., De Vos, W. M., & Satokari, R. (2015). Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Applied and Environmental Microbiology, 81, 3655.

https://doi.org/10.1128/AEM.04050-14

PMid:25795669 PMCid:PMC4421065

 Rong, Y., Dong, Z., Hong, Z.,……, Lu, Y. (2017). Reactivity toward Bifidobacterium longum and Enterococcus hirae demonstrate robust CD8+ T cell response and better prognosis in HBV-related hepatocellular carcinoma. Experimental Cellular Research, 358, 352e9.

https://doi.org/10.1016/j.yexcr.2017.07.009

PMid:28694023

 Round, J.L., & Mazmanian, S.K. (2010). Inducible Foxp3. Regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences, 107, 12204e9. https://doi.org/10.1073/pnas.0909122107

PMid:20566854 PMCid:PMC2901479

 Routy, B., Le Chatelier, E., Derosa, L,……., Zitvogel, L. (2018). Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 359, 91e7.

https://doi.org/10.1126/science.aan3706

PMid:29097494

 Saarela, M.H. (2019). Safety aspects of next generation probiotics. Current Opinion in Food Science, 30, 8-13. https://doi.org/10.1016/j.cofs.2018.09.001

Schneeberger, M., Everard, A., Gomez-Valades, A.G.,….., Cani, P.D. (2015). Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Scientific Reports, 5, 16643.

https://doi.org/10.1038/srep16643

PMid:26563823 PMCid:PMC4643218

 Shyam, K.U., Krishnan, R., Jeena, K., Vijaysunderdeva, G., & Prasad, K.P. (2021). Next-generation probiotics- Future therapeutics for sustainable aquaculture. Aquaculture, 25(4), 23-26.

 Sivan, A., Corrales, L., Hubert, N.,……, Gajewski, T. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti- PD-L1 efficacy. Science, 350, 1084e9.

https://doi.org/10.1126/science.aac4255

PMid:26541606 PMCid:PMC4873287

 Sun, F., Zhang, Q., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2019). A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Research International, 126, 108590. https://doi.org/10.1016/j.foodres.2019.108590

PMid:31732047

 Sun, J., Wang, F., Ling, Z., Yu, X., Chen, W., Li, H., Jin, J., Pang, M., Zhang, H., Yu, J., & Liu, J. (2016). Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Research, 1642, 180-188.

https://doi.org/10.1016/j.brainres.2016.03.042

PMid:27037183

 Syakila, R.N., Lim, S.M., Agatonovic-Kustrin, S., Lim, F.T., & Ramasamy, K. (2019). In vitro assessment of pediococci- and lactobacilli-induced cholesterol-lowering effect using digitally enhanced high-performance thin-layer chromatography and confocal microscopy. Analytical and Bioanalytical Chemistry, 411, 1181-1192.

https://doi.org/10.1007/s00216-018-1544-2

PMid:30680424

 Tan, H., Wang, C., Zhang, Q., Tang, X., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Preliminary safety assessment of a new Bacteroides fragilis isolate. Food and Chemical Toxicology, 135, 110934.

https://doi.org/10.1016/j.fct.2019.110934

PMid:31682931

 Tan, H., Zhai, Q., & Chen, W. (2019). Investigations of Bacteroides spp. towards next-generation probiotics. Food Research International, 116, 637-644.

https://doi.org/10.1016/j.foodres.2018.08.088

PMid:30716990

 Torp, A.M., Bahl, M.I., Boisen, A., & Licht, T.R. (2022). Optimizing oral delivery of next generation probiotics. Trends in Food Science & Technology, 119, 101-109. https://doi.org/10.1016/j.tifs.2021.11.034

Udayappan, S., Manneras-Holm, L., Chaplin-Scott, A., Belzer, C., Herrema, H., Dallinga-Thie, G.M., Duncan, S.H., Stroes, E.S.G., Groen, A.K., Flint, H.J., Backhed, F., De Vos, W.M., & Nieuwdorp, M. (2016). Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice. NPJ Biofilms and Microbiomes, 2, 16009. https://doi.org/10.1038/npjbiofilms.2016.9

PMid:28721246 PMCid:PMC5515273

 Wu, T.R., Lin, C.S., Chang, C.J.,……, Lai, H.-C. (2019). Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut, 68(2), 248e62. https://doi.org/10.1136/gutjnl-2017-315458

PMid:30007918

 Yang, J., Li, Y., Wen, Z., Liu, W., Meng, L., & Huang, H. (2021). Oscilliporia- a candidate for the next generation probiotics. Gut Microbes, 13(1), e1987783. https://doi.org/10.1080/19490976.2021.1987783

PMid:34693878 PMCid:PMC8547878

 Zhang, M., Qiu, X., Zhang, H., Yang, X., Hong, N., Yang, Y., Chen, H., & Yu, C. (2014). Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PloS One, 9, e109146-e109146. https://doi.org/10.1371/journal.pone.0109146

PMid:25275569 PMCid:PMC4183556

 Zhang, W., Zhu, B., Xu, J., Liu, Y., Qiu, E., Li, Z., Li, Z., He, Y., Zhou, H., Bai, Y., & Zhi, F. (2018). Bacteroides fragilis Protects Against Antibiotic-Associated Diarrhea in Rats by Modulating Intestinal Defenses. Frontiers in Immunology, 9, 1040. https://doi.org/10.3389/fimmu.2018.01040

PMid:29868005 PMCid: PMC5954023

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
821
View
0
Share