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Abstract 

Lactic acid bacteria, most of which are represented by the 

genera Lactobacilli and Bifidobacteria, have been 

extensively investigated for their role as probiotics and 

have also been used in food items due to their 

advantageous metabolic properties in manufacturing 

fermented food. To expand the spectrum of probiotics, 

there is currently a great deal of interest in researching 

different microorganisms with potential health benefits 

for humans. These next-generation probiotics are bacteria 

that mostly come from the Bacteroides, Clostridium, 

Faecalibacterium, and Akkermansia genera. However, 

studying these microbes as probiotics and using them in 

food production can become extremely problematic. 

Understanding its efficacy and safety for consumption, as 

well as its application in the production of new food items 

and industrial-scale food production, are among some of 

the challenges faced. The next generation of probiotics 

has become a major topic in scientific research as well as 

the food sector and poses new obstacles as it gets studied 

further.  

 

Keywords:  Next-generation probiotics (NGP); Functionality; Biologics; 

Therapeutics. 

Abbreviations: NGP, Next generation probiotic; FAO, Food and Agriculture 

Organization; WHO, World Health Organization; LAB, Lactic Acid Bacteria;  
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Introduction  

The human microbiota, which consists of 100 trillion bacteria, 

forms a symbiotic connection with the host and plays a significant role 

in health promotion as well as the start and progression of illnesses 

(Bron et al., 2017; Ferdous et al., 2018). Intestinal tract microbes take 

part in biological processes that regulate metabolic phenotype, and 

development of the epithelial lining, and also influence innate 

immunity.  Furthermore, Intestinal dysbiosis (alteration of intestinal 

microbiota composition) has the potential to develop complex 

diseases like diabetes mellitus, obesity, asthma, neurodegenerative 

diseases, and inflammatory bowel disease, among others (Levy et al., 

2017). The identification of beneficial bacterial strains capable of 

treating intestinal dysbiosis and hence promoting health has resulted 

from a thorough understanding of the intestinal microbiota (Adak 

and Khan, 2019). 

The term "probiotics" is now commonly used not just by medical 

experts, but also by the general public outside of medicine, as a 

synonym for "a method of enhancing one's health." Interestingly, 

probiotics are frequently used to refer to both medications and 

foodstuffs. Probiotics, on the other hand, are defined by the joint 

FAO/WHO group as "living microorganisms that, when administered 

into the body in sufficient proportions, offer a health benefit" (Hill et 

al., 2014). 

The majority of microorganisms licensed and sold as probiotics 

today belong to the lactic acid bacteria (LAB) group, which is mostly 

represented by the genus Lactobacilli (Brodmann et al., 2017).  
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They are metabolically distinguished by the production of lactic acid 

from carbohydrates, resulting in an acidic environment that prevents 

the development of some pathogenic bacteria species (Chowdhury et 

al., 2012; Fakruddin et al., 2017). They may also generate secondary 

metabolites such as bacteriocins, exopolysaccharides, and enzymes, all 

of which are beneficial to human health (Chowdhury et al., 2013; 

Heinken et al., 2014). 

Despite the benefits mentioned above, current probiotic 

development trends seek to reduce the usage of probiotic groups like 

Lactobacillus and enhance the use of other genera and species of 

bacteria that are more suited to the intestinal environment 

(Fernández-Murga & Sanz, 2016; Anvar & Nowruzi, 2021). These 

bacteria are termed Next Generation probiotics (NGPs). The growing 

popularity of NGPs in recent years can be linked to the various 

benefits they provide over conventional probiotics (Shyam et al., 2021; 

Han et al., 2021; Lopez-Moreno et al., 2021). In-depth research into 

this new generation of probiotics will allow for the development of 

more targeted tools to aid in the treatment of emerging disorders 

(O'Toole et al., 2017; Sun et al., 2019). 

The goal of this review is to provide an overview of some of the 

prospective next-generation probiotics and their health benefits. 

 

Health benefits of probiotics 

Interest in the use of probiotics in formerly undiscovered areas of 

application has grown as a result of the increasing amount of gut 

microbiota research throughout the world. Probiotics used in 

medicine have nearly solely dominated Lactobacilli strains as being the 

most promising both scientifically and commercially, for decades. 

Probiotics' beneficial impacts on microorganisms have been 

researched extensively; they "activate" first at the local level (for 

example, in the intestinal lumen, on the mucous membrane, and in 

the submucosal layer) and subsequently at the system level. The 

components of probiotics' cell walls (peptidoglycans, teichoic acids, 

capsular polysaccharides) and their expressed proteins mediate their 

effects on organisms. Due to direct antagonism (inhibition), 

competitive restriction of receptor binding, indirect effects on 

commensal microorganisms, and competition for nutritional 

molecules, probiotics have been found to reduce enteropathogens' 

access to intestinal epithelial cells (table-1).  

 

Next-Generation Probiotics (NGPs) 

Lactobacillus spp. and other commonly used probiotics were picked 

"at random" - based on research of people's dietary patterns. Although 

most of these probiotics are biologically safe and some are clinically 

effective, the effects of their usage are statistically insignificant in the 

context of evidence-based medicine. Furthermore, traditional 

probiotics are also not utilized to treat certain disorders (Bottacini et 

al., 2017). As a result, the identification and practical use of more 

potent and disease-specific next-generation probiotics is a critical 

research area at this moment across the world. 

Many previously unrecognized probiotic bacterial strains have been 

identified from intestinal microbiota using modern next-generation 

sequencing techniques, and these next-generation probiotics have 

become potential sources for novel drugs as therapeutics for a variety 

of diseases, including gastroenterological pathology (Chang et al., 

2019). When compared to regular probiotics, new-generation 

probiotics have several benefits (Table-2). Numerous metabolites 

(such as folate, indoles, secondary bile acids, trimethylamine-N-oxide 

(TMAO), serotonin, gamma-aminobutyric acid (GABA), short-chain 

fatty acids (SCFAs)—acetate, propionate, butyrate, and others) have 

been discovered from NGPs to date, all of which can play a role in the 

regulation of physiological host phenotype (Husted et al., 2017; 

Kimura et al., 2014; Byndloss et al., 2017; Clarke et al., 2014; Olveira et 

al., 2016). 

 

Candidates for Next Generation Probiotics 

Bifidobacterium spp.  

Bifidobacterium spp. is a member of the Actinobacteria phylum. 

Bifidobacterium spp. strains have been shown to be effective in the 

treatment of colitis (inflammation of colon) (Lin et al., 2019). 

Anticancer treatment has shown that B. breve and B. longum are 

effective against colorectal cancer, and that these strains can improve 

the impact of anti-cytokine preparations (Sivan et al., 2015). After 

hepatocellular carcinoma resection, body responsiveness to B. longum 

and Enterococcus hirae induces a persistent CD8+-T-cell response and 

improves prognosis (Rong et al., 2017). Bifidobacterium spp. 

(especially Bifidobacterium longum) can enter the circulation and 

specifically accumulate in malignant tumors (Li et al., 2010). 

 

Akkermansia muciniphila 

The Verrucomicrobia phylum includes Akkermansia muciniphila. 

One of A. muciniphila's most notable characteristics is its capacity to 

use intestinal mucins, glycoproteins from the epithelial mucus layer, 

as its only source of carbon and nitrogen (Derrien et al., 2004; 

Reunanen et al., 2015). A. muciniphila protects against type 2 diabetes 

and obesity via modulating the endocannabinoid system 

(neuromodulatory system), which regulates glucose metabolism (Cani 

and de Vos, 2017). It has been discovered that prebiotics of the insulin 

type raise the amount of A. muciniphila, which helps to enhance 

metabolism in obese people (Everard et al., 2013). Anti-cytokine 

medications used in cancer have also been demonstrated to be 

enhanced by A. muciniphila in model animals (Schneeberger et al., 

2015). Patients with inflammatory bowel diseases and metabolic 

disorders were found to have lower levels of A. muciniphila, 

suggesting that this bacterium may have anti-inflammatory 

characteristics (Derrien et al., 2017; Collado et al., 2007). The capacity  
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of A. muciniphila to aid the repair of the compromised intestinal 

barrier caused by a high-fat diet explains these positive benefits 

(Everard et al., 2013). 

 

Bacteroides fragilis 

Bacteroides fragilis belongs to the Bacteroides species. The B. fragilis 

strains that lack the enterotoxin gene, display many major benefits 

(Round and Mazmanian, 2010; Goloshchapov et al., 2020). The 

capsular polysaccharide B. fragilis (PSA), which can modulate 

microbiota-host interactions, plays the most important function in 

this. PSA increases T-cell anti-inflammatory memory thanks to 

zwitterionic motifs, which lowers systemic inflammation symptoms 

(Lukiw, 2016; Tan et al., 2020; Nowruzi et al., 2022). Because of their 

potential to reduce pathogen-induced inflammation and cure autism 

spectrum disorders, as well as their ability to reduce Vibrio infections 

and antibiotic-induced diarrhea, B. fragilis strains are regarded as 

promising next-generation probiotics (Zhang et al., 2018). 

 

Christensenella minuta 

Christensenella minuta belongs to the Firmicutes family and has 

been shown to have probiotic benefits in the treatment of obesity and 

related metabolic diseases. Individuals with a low BMI have a high 

amount of Christensenellaceae (Goodrich et al., 2016). It has also been 

proven that the usage of C. minuta may enhance the microbiota 

related with obesity (Goodrich et al., 2014) and it’s also been 

discovered that taking C. minuta increases the formation of SCFAs 

(short-chain fatty acids) (Breton et al., 2022).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Faecalibacterium prausnitzii 

Faecalibacterium prausnitzii is one of the most promising bacteria 

for developing next-generation probiotics at present. The 

Ruminococcaceae family includes F. prausnitzii (Carlsson et al., 2013). 

These bacteria can ferment glucose to produce SCFA (butyrate, formic 

acid, and D-lactate), allowing the gut to remain in a state of 

homeostasis (Miquel et al., 2013). Bacteria belonging to the 

genus Faecalibacterium are being studied as a modulator in cancer 

immunotherapy (Ferreira-Halder et al., 2017). Scientists have found 

a link between the quantity of Faecalibacterium bacteria in the 

intestines and the long-term survival of melanoma patients. 

Furthermore, it also reveals that the number of regulatory T cells and 

the level of pro-inflammatory cytokines IL-6, IL-8, and soluble IL-2 

receptor in the blood during melanoma metastases were adversely 

linked with the concentration of Faecalibacterium in the colon 

(Chaput et al., 2017). The findings show that F. prausnitzii is an 

important therapeutic target as well as a prognostic marker in cancer 

patients (Gopalakrishnan et al., 2018). The butyrate generated by 

carbohydrate fermentation has been linked to F. prausnitzii's health 

advantages, which include an immunomodulatory response in the 

host, improved intestinal barrier integrity, and anti-inflammatory 

effects (Saarela, 2019). F. prausnitzii, on the other hand, has the power 

to interact with the host's health through immunomodulatory, energy-

producing, and anti-inflammatory actions, and can also act as a 

diagnostic marker in a variety of diseases, including parkinson's 

disease, alzheimer's disease, depression, type 2 diabetes mellitus, 

crohn's disease, and irritable bowel syndrome (Zhang et al., 2014). 

Table 1I Effects of probiotics on the body (Pesce et al., 2022; He et al., 2021; Lin et al., 2019) 

 

Immune Non-immune 

Increased production of secretory immunoglobulin A Stimulation of protective products for mucus epithelium 

Correction of local and systemic cytokine profile Decreased permeability of the intestinal epithelium 

Activation of antigen-presenting local macrophages Deletion of bacteriocins that suppress intestinal pathogens 

Reduced induction of food antigens Inactivation of toxins produced by intestinal pathogens 

 

Table 2I Comparison between traditional probiotics and next-generation probiotics (Kazmierczak-Siedlecka et al., 2022; Torp 

et al., 2022; Yang et al., 2021; Cunningham et al., 2021) 

 

Traditional probiotics Next-generation probiotics 

Identified from life experiences Identified from bioinformatics and/or NGS studies 

Considered safe for human Safety needs to be evaluated 

Mode of action not well defined Well-defined mode of actions 

The limited spectrum of microbial genera and species The wide spectrum of microbial genera and species 

Target general sub-health population Target specific diseases 

Mostly used as a supplement Pose potential to be used as biotherapeutics 
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Prevotella copri 

The Bacteroidetes phylum contains Prevotella copri. This microbe's 

probiotic strain can improve glucose tolerance and liver glycogen 

levels (De Vadder et al., 2016). P. copri has been recommended as a 

possible target for metabolic illnesses including type-2 diabetes and 

obesity (Lin et al., 2019). 

 

Parabacteroides goldsteinii  

Parabacteroides goldsteinii is considered as a next generation 

probiotic for obesity (Chang et al., 2015). P. goldsteinii levels are much 

lower in the microbiota of mice fed with a high-fat diet, but are 

significantly higher after prebiotic polysaccharide therapy. It aids in 

weight reduction when paired with P. goldsteinii prebiotics, along with 

increasing the permeability of the intestines, metabolic endotoxemia, 

inflammation, and insulin resistance (Wu et al., 2019). P. goldsteinii 

has also been shown to have anti-inflammatory and insulin-

stimulating properties (Lin et al., 2019). 

 

Clostridium butyricum 

Clostridium butyricum is a Gram-positive, spore-forming, and 

obligate anaerobe, meaning it is extremely sensitive to oxygen. 

Because of its capacity to generate significant amounts of butyric acid, 

the microbe is given the name 'butyricum' (Cassir et al., 2016). The 

capability of this species of Clostridium to ferment non-carbohydrates 

digestible, creating short-chain fatty acids (mostly butyric acid), which 

are a primary basis for enterocyte proliferation and play an important 

role in maintaining colonic health (Hamer et al., 2008; Sun et al., 

2016). C. butyricum has been discovered to greatly reduce the 

formation of intestinal tumors in mice induced by a high-fat diet in 

the prevention and treatment of cancer. In addition, the bacteria cause 

intestinal tumor cells to proliferate less and undergo more apoptosis 

(Chen et al., 2020). Finally, therapy with C. butyricum strains in 

conjunction with antidepressants resulted in considerable 

improvement in depression in depressed individuals (Miyaoka et al., 

2018). 

 

Eubacterium hallii 

E. hallii is a Gram-positive, catalase-negative anaerobic bacterium 

belonging to the family Lachnospiraceae of the phylum Firmicutes 

(Duncan et al., 2004). E. hallii is a species that can generate butyrate 

by fermenting carbohydrates. Its capacity to manufacture butyrate 

utilizing both lactate and acetate as a substrate of metabolism 

distinguishes it from other genera of bacteria of intestinal origin 

(Louis et al., 2009). E. hallii has been characterized as a crucial species 

within the intestinal food chain that has the ability to have a 

significant influence on metabolic balance as well as the gut 

microbiota by forming various short-chain fatty acids from dietary 

polysaccharides or the host itself (Engels et al., 2016). It was shown 

that daily oral dose of E. hallii improves insulin sensitivity and boosts 

metabolic energy in obese and diabetic mice. Furthermore, increasing 

dosages of E. hallii had no effect on treated mice's body weight or food 

intake, suggesting that the bacteria might be a novel, safe and effective 

probiotic strain for improving insulin sensitivity in the treatment of 

obesity and diabetes (Udayappan et al., 2016). Bifidobacteria, which 

are naturally found in the gut microbiota and in breast milk, may 

digest complex carbohydrates to produce monosaccharides, which can 

then be utilized by E. hallii to produce short-chain fatty acids 

(Bunesova et al., 2018). This symbiotic relationship between 

Bifidobacteria and E. hallii suggests a significant and advantageous 

relationship for the host. 

 

Other emerging probiotics 

Probiotic bacteria such as Eubacterium limosum, Enterococcus 

hirae, Enterococcus faecium, Collinsella aerofaciens, and Burkholderia 

cepacia, which were previously unknown, were shown to improve the 

efficacy of anti-tumor immunotherapy (Routy et al., 2018). As a result, 

both alone and in combination with B. fragilis, B. cepacia can improve 

the efficacy and tolerance of anti-tumor immunotherapy (Pitt et al., 

2017). Dysosmobacter welbionis (Breton et al., 2022), Eggerthellaceae 

spp. (Lin et al., 2019), Pediococcus pentosaceus (Syakila et al., 2019), 

and Butyricoccus pullicaecorum are all probable NGPs (Andrade et al., 

2020). 

 

Prospects of next generation probiotics as biotherapeutics 

Probiotics have been used as fermented foods by humans for a long 

time, but the beneficial effects of these bacteria were not well 

understood until recently. Probiotics of the current generation have 

already demonstrated their value in maintaining gut microbiota and 

reducing inflammatory responses, allergic illnesses, and autoimmune 

diseases (Tan et al., 2019). However, the restricted range of current-

generation probiotics, as well as their limited survivability in meals 

and in the gut, makes it easier to find even better probiotics with 

greater beneficial qualities. Next-generation probiotics are the name 

given to such probiotics (NGPs). New microorganisms with potential 

beneficial characteristics to human health expand the probiotic 

spectrum and contribute to the development and elaboration of new 

food products that respond to the population's growing interest in 

health and quality of life, making next-generation probiotics an 

important topic for science and the food industry. 

Despite various restrictions, the development of NGPs is moving 

forward. Isolation of such NGPs necessitates specialized culture 

techniques, and many such potential probiotics may persist in the gut 

environment in a viable but non-culturable (VBNC) form. 

Furthermore, in order to be employed as biotherapeutics, such NGPs 

must go through three rounds of clinical trials (preclinical, 

toxicological studies, and pharmacodynamics). Isolation of selected 

NGPs is predicted to be possible using advanced culturomics 

technology (Bilen et al., 2018). Furthermore, the availability of 
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microbe-free animal models will aid in the identification of safe NGPs 

that meet regulatory parameters such as the US-LBP FDA's program 

(live biotherapeutic products) (Food and Drug Administration). 

Although there is a strong interest among scientists to broaden the 

range of probiotic microbes, it poses significant obstacles for research 

and industry. The efficacy and safety of the next generation of 

probiotics, as well as the technological elements of using these 

microbes in food preparation, are the most pressing concerns. The 

great majority of these microorganisms have metabolic properties that 

make them challenging to utilize as sustainable methods in the 

development of novel products, particularly in large-scale food 

production (O'toole et al., 2017; Saarela, 2019). 

The properties of these microorganisms, such as their great 

sensitivity to oxygen and remarkable adaptation to the gut habitat, 

make it difficult to prepare effective supplements. These bacteria, on 

the other hand, might be regarded as the next generation of 

probiotics. The discovery of physiologically active portions of these 

microbes will open up new avenues for health promotion research 

(Heintz-Buschart et al., 2018). The utilization of biotechnology 

techniques and information at various levels of '-omics' sciences 

(genomics, metabolomics) are valuable allies for improving probiotic 

strains and developing novel strains (Douillard and de Vos, 2019). 

However, few studies have been conducted to establish the 

effectiveness and safety of these microorganisms, necessitating more 

research in in vivo systems and clinical trials. Finally, there are a few 

studies analyzing the potential application of next-generation 

probiotics in food matrices, and their impacts on intrinsic technical 

and sensory factors must be assessed. In the future, these microbes 

may be employed as biotherapeutic items and sold mostly as 

nutritional supplements. 

 

Conclusion 

Modern views about the role of the microbiota and microbiome in 

the formation and maintenance of health have sparked the 

development of several other next-generation probiotics, the 

consumption of which, in most cases, has a positive impact on the 

body owing to the microbiota modeling effect. Traditional probiotics, 

which are mostly lactobacilli and bifidobacteria, are increasingly 

giving way to next-generation probiotics from other families (most 

often deep anaerobes). In the future, more study into the mechanisms 

of action of these NGPs will allow probiotics to be used as 

biotherapeutics in the treatment of many disorders in both adults and 

children. 
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