References
Adama, D. A., Lotfi, A., & Ranson, R. (2021). A survey of vision-based transfer learning in human activity recognition. Electronics, 10(19), 2412.https://doi.org/10.3390/electronics10192412
Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Real-time multi-person 2D pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291-7299.https://doi.org/10.48550/arXiv.1611.08050
Devarajan, R. K., & Khader, S. S. (2023). Pose sequence-aware generative adversarial network for augmenting skeleton sequences to improve cerebral palsy detection by deep learner. International Journal of Intelligent Engineering & Systems, 16(5), 512-522.DOI:10.14569/IJACSA.2021.0120383
Farahanipad, F., Rezaei, M., Nasr, M. S., Kamangar, F., & Athitsos, V. (2022). A survey on GAN-based data augmentation for hand pose estimation problem. Technologies, 10(2), 1-13.doi.org/10.3390/technologies10020043
Gao, Q., Yao, S., Tian, Y., Zhang, C., Zhao, T., Wu, D., ... & Lu, H. (2023). Automating General Movements Assessment with quantitative deep learning to facilitate early screening of cerebral palsy. Nature Communications, 14(1), 8294.DOI:10.1038/s41467-023-44141-x
Glass, H. C., Li, Y., Gardner, M., Barkovich, A. J., Novak, I., McCulloch, C. E., & Rogers, E. E. (2021). Early identification of cerebral palsy using neonatal MRI and general movements assessment in a cohort of high-risk term neonates. Pediatric Neurology, 118, 20-25.DOI: 10.1016/j.pediatrneurol.2021.02.003
Hesse, N., Pujades, S., Black, M. J., Arens, M., Hofmann, U. G., & Schroeder, A. S. (2019). Learning and tracking the 3D body shape of freely moving infants from RGB-D sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(10), 2540-2551.DOI: 10.1109/TPAMI.2019.2917908
https://vrai.dii.univpm. it/mia-dataset
Leo, M., Bernava, G. M., Carcagnì, P., & Distante, C. (2022). Video-based automatic baby motion analysis for early neurological disorder diagnosis: state of the art and future directions. Sensors, 22(3), 866.; https://doi.org/10.3390/s22030866
Li, D., Qu, J., Tian, Z., Mou, Z., Zhang, L., & Zhang, X. (2022). Knowledge-based recurrent neural network for TCM cerebral palsy diagnosis. Evidence-Based Complementary and Alternative Medicine, 2022, 1-10. https://doi.org/10.1155/2022/7708376
Lin, Y. (2023). A deep learning algorithm-based visual strategy intervention study for children with autism spectrum disorders–extraction and detection of children’s behavioral features. European Review for Medical & Pharmacological Sciences, 27(11), 4914-4928.DOI:10.26355/eurrev_202306_32608
Migliorelli, L., Moccia, S., Pietrini, R., Carnielli, V. P., & Frontoni, E. (2020). The babyPose dataset. Data in Brief, 33, 106329.
Mushta, S. M., Khandaker, G., Power, R., & Badawi, N. (2021). Cerebral palsy in the Middle East: epidemiology, management, and quality of life. In Handbook of Healthcare in the Arab World, Cham: Springer International Publishing, pp. 2539-2572.DOI:10.1007/978-3-319-74365-3_111-1
Mushta, S. M., King, C., Goldsmith, S., Smithers-Sheedy, H., Badahdah, A. M., Rashid, H., ... & McIntyre, S. (2022). Epidemiology of cerebral palsy among children and adolescents in Arabic-speaking countries: a systematic review and meta-analysis. Brain Sciences, 12(7), 859.DOI: 10.3390/brainsci12070859
Nguyen-Thai, B., Le, V., Morgan, C., Badawi, N., Tran, T., & Venkatesh, S. (2021). A spatio-temporal attention-based model for infant movement assessment from videos. IEEE Journal of Biomedical and Health Informatics, 25(10), 3911-3920.DOI: 10.1109/JBHI.2021.3077957
Paul, S., Nahar, A., Bhagawati, M., & Kunwar, A. J. (2022). A review on recent advances of cerebral palsy. Oxidative Medicine and Cellular Longevity, 2022, 1-20.DOI: 10.1155/2022/2622310
Redd, C. B., Karunanithi, M., Boyd, R. N., & Barber, L. A. (2021). Technology-assisted quantification of movement to predict infants at high risk of motor disability: A systematic review. Research in Developmental Disabilities, 118, 104071.DOI: 10.1016/j.ridd.2021.104071
Sakkos, D., Mccay, K. D., Marcroft, C., Embleton, N. D., Chattopadhyay, S., & Ho, E. S. (2021). Identification of abnormal movements in infants: A deep neural network for body part-based prediction of cerebral palsy. IEEE Access, 9, 94281-94292.DOI:10.1109/ACCESS.2021.30934
Silva, N., Zhang, D., Kulvicius, T., Gail, A., Barreiros, C., Lindstaedt, S., ... & Marschik, P. B. (2021). The future of general movement assessment: The role of computer vision and machine learning–a scoping review. Research in Developmental Disabilities, 110, 103854.https://doi.org/10.1016/j.ridd.2021.103854
Wu, Q., Qin, P., Kuang, J., Wei, F., Li, Z., Bian, R., ... & Xu, G. (2023). A training-free infant spontaneous movement assessment method for cerebral palsy prediction based on videos. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 1670-1679.DOI: 10.1109/TNSRE.2023.3255639
Wu, Q., Xu, G., Wei, F., Chen, L., & Zhang, S. (2021). RGB-D videos-based early prediction of infant cerebral palsy via general movements complexity. IEEE Access, 9, 42314-42324.DOI: 10.1109/ACCESS.2021.3066148
Wu, Q., Xu, G., Wei, F., Kuang, J., Qin, P., Li, Z., & Zhang, S. (2022). Supine infant pose estimation via single depth image. IEEE Transactions on Instrumentation and Measurement, 71, 1-11.DOI: 10.1109/TIM.2022.3178693
Zhang, H., Ho, E. S., & Shum, H. P. (2022). CP-AGCN: Pytorch-based attention informed graph convolutional network for identifying infants at risk of cerebral palsy. Software Impacts, 14, 100419.https://doi.org/10.1016/j.simpa.2022.100419
Zhang, H., Shum, H. P., & Ho, E. S. (2022). Cerebral palsy prediction with frequency attention informed graph convolutional networks. In 44th IEEE Annual International Conference of the IEEE Engineering in Medicine & Biology Society, pp. 1619-1625.DOI: 10.1109/EMBC48229.2022.9871230