Journal of Integrative Microbial Sciences | Online ISSN 2209-2161
REVIEWS   (Open Access)

Microbial Biotechnology: Assessing The Applications Of Microorganisms In Biotechnology, Including Biofuel Production And Bioremediation

Chandrarohini Saravanan 1, Nor Hazliana Harun 2, Siti Salmah Noordin 1,2

+ Author Affiliations

Microbial Bioactives 2 (1) 1-8 https://doi.org/10.25163/microbbioacts.2110169

Submitted: 28 September 2019 Revised: 15 November 2019  Published: 14 November 2019 


Abstract

Microbial biotechnology is a rapidly evolving field that harnesses microorganisms for applications such as biofuel production and bioremediation. This review highlights its significance and diverse applications while summarizing key advancements. Microorganisms, including algae, fungi, and bacteria, are indispensable due to their versatility, rapid growth, and biochemical capabilities, making them valuable in industrial and environmental sectors. In biofuel production, microorganisms convert organic matter into ethanol and biodiesel, reducing fossil fuel dependence and addressing energy security and environmental concerns. Similarly, bioremediation employs microbes to degrade or absorb pollutants, transforming contaminants into harmless metabolites and restoring ecosystems. Advances in microbial biotechnology have enabled the development of genetically modified microorganisms optimized for enhanced biofuel yields through metabolic engineering. Additionally, synthetic biology facilitates the design of novel microbes with specialized traits, expanding biotechnological applications. Understanding microbial genetics and metabolism is crucial for optimizing biotechnology. Omics technologies, including genomics, proteomics, and metabolomics, have revolutionized microbial analysis, allowing for strain enhancements that improve pollutant degradation and biofuel synthesis. Furthermore, integrating nanotechnology with microbiology has opened new avenues in biotechnology. Nanomaterials enhance microbial activity in biotechnological processes, serving as carriers or stabilizers in bioreactors to improve efficiency and productivity. In conclusion, microbial biotechnology continues to evolve, offering sustainable solutions to global challenges, including energy security and environmental pollution. Innovations in genetic engineering, omics technologies, and nanomaterials are expanding its potential, ensuring continuous progress. As advancements unfold, ethical and responsible implementation remains imperative to maximize benefits for both society and the environment.

Keywords : Microbial Biotechnology, Biofuel Production, Bioremediation,. Genetic Engineering, Omics Technologies

References


Bharagava, R. N., Saxena, G., & Mulla, S. I. (2020). Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. Bioremediation of Industrial Waste for Environmental Safety: Volume I: Industrial Waste and Its Management, 1-18.

Boopathy, R. (2000). Factors limiting bioremediation technologies. Bioresource technology, 74(1), 63-67.

Butbunchu, N., & Pathom-Aree, W. (2019). Actinobacteria as promising candidate for polylactic acid type bioplastic degradation. Frontiers in microbiology, 10, 2834.

Cassone, B. J., Grove, H. C., Elebute, O., Villanueva, S. M., & LeMoine, C. M. (2020). Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proceedings of the Royal Society B, 287(1922), 20200112.

Choudhary, S., & Sar, P. (2011). Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. Journal of hazardous materials, 186(1), 336-343.

Das, S., Raj, R., Mangwani, N., Dash, H. R., & Chakraborty, J. (2014). Heavy metals and hydrocarbons: adverse effects and mechanism of toxicity. Microbial biodegradation and bioremediation, 23-54.

Edward M. Rubin (2008). Genomics of cellulosic biofuels. Nature 454: 841-845.3. Elanor W & Rolfes S (2005). Understanding Nutrition. Thomson-Wadsworth, 10th edition: pp 6.

Erisman, J. W., Galloway, J. N., Seitzinger, S., Bleeker, A., Dise, N. B., Petrescu, A. R., … & de Vries, W. (2013). Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1621), 20130116.

 Farrell A, Plevin R, Turner B, Jones A, O’Hare M, Kammen D (2006). Ethanol can contribute to energy and environ-mental goals. Science 311:506–508.5.

Ghatge, S., Yang, Y., Ahn, J. H., & Hur, H. G. (2020). Biodegradation of polyethylene: a brief review. Applied Biological Chemistry, 63(1), 1-14.

Ghosal, D., Ghosh, S., Dutta, T. K., & Ahn, Y. (2016). Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Frontiers in microbiology, 1369.

Görke B & Stülke J (2008). Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624.6.

Gupta, A., Joia, J., Sood, A., Sood, R., Sidhu, C., & Kaur, G. (2016). Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol, 8(4), 364-372.

Hill J, Nelson E, Tilman D, Polasky S & Tiffany D (2006). Environmental, economic,and energetic costs and ben ts of biodiesel and ethanol biofuels. Proc. Natl Acad. Sci. USA 103: 11206–11210.7.

Himmel ME et al., (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804–807.8.

Hugenholtz, P (2002). Exploring prokaryotic diversity in the genomic era. Genome Biology 3, REVIEWS0003.9.

Ikemoto, Y., Teraguchi, M., & Kobayashi, Y. (2002). Plasma levels of nitrate in congenital heart disease: comparison with healthy children. Pediatric cardiology, 23, 132-136.

Joshi, P. K., Swarup, A., Maheshwari, S., Kumar, R., & Singh, N. (2011). Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian journal of microbiology, 51, 482-487.

Kim S, Dale EB (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass Bio-energy 26:361–375.10.

Kuhad RC, Mehta G, Gupta R, Sharma KK (2010). Fed batch enzymatic sacchar cation of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34:1189–1194.11.

Kumar, A., Chaturvedi, A. K., Yadav, K., Arunkumar, K. P., Malyan, S. K., Raja, P., ... & Yadav, A. N. (2019). Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. Recent advancement in white biotechnology through fungi: Volume 3: Perspective for sustainable environments, 437-461.

Litchfield, C. (2005). Thirty years and counting: bioremediation in its prime?. BioScience, 55(3), 273-279.

Lladó, S., Covino, S., Solanas, A. M., Viñas, M., Petruccioli, M., & D’annibale, A. (2013). Comparative assessment of bioremediation approaches to highly recalcitrant PAH degradation in a real industrial polluted soil. Journal of hazardous materials, 248, 407-414.

Malhautier, L., Khammar, N., Bayle, S., & Fanlo, J. L. (2005). Biofiltration of volatile organic compounds. Applied microbiology and biotechnology, 68, 16-22.

Mead, I., Apted, J., & Sharif, S. (2013). Delivering London 2012: Contaminated soil treatment at the olympic park. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(1), 8-17.

Mohamed, R. M., & Abo-Amer, A. E. (2012). Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane. Journal of basic microbiology, 52(1), 53-65.

Moreira, I. T., Oliveira, O. M., Triguis, J. A., Queiroz, A. F., Barbosa, R. M., Anjos, J. A., … & Rios, M. C. (2013). Evaluation of the effects of metals on biodegradation of total petroleum hydrocarbons. Microchemical Journal, 110, 215-220.

Mustafa, Y. A., Abdul-Hameed, H. M., & Razak, Z. A. (2015). Biodegradation of 2, 4-dichlorophenoxyacetic acid contaminated soil in a roller slurry bioreactor. CLEAN–Soil, Air, Water, 43(8), 1241-1247.

Nduka, J. K., Umeh, L. N., Okerulu, I. O., Umedum, L. N., & Okoye, H. N. (2012). Utilization of different microbes in bioremediation of hydrocarbon contaminated soils stimulated with inorganic and organic fertilizers. J Pet Environ Biotechnol, 3(2), 1-9.

Nejat N, Mantri N (2017). Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence. Curr Issues Mol Biol 3;23:1-16.12.

Piskonen, R., Nyyssönen, M., Rajamäki, T., & Itävaara, M. (2005). Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation, 16, 127-134.

 Pradhan D, Mishra D, Kim DJ, Jong GA, Chaudhury GR, Lee SW(2010).  Bioleaching  kinetics  and  multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Journal of Hazardous Materials 175: 267–273.13.

Ray, P., Lakshmanan, V., Labbé, J. L., & Craven, K. D. (2020). Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture. Frontiers in Microbiology, 11, 622926.

 Reddy N and Yang Y (2005). Bi bers from agricultural byproducts for industrial applications. Trends Biotechnol-ogy 23: 22–27.14.

Ru, J., Huo, Y., & Yang, Y. (2020). Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology, 11, 442.

Sigler, M. (2014). The effects of plastic pollution on aquatic wildlife: current situations and future solutions. Water, Air, & Soil Pollution, 225, 1-9.

Singh, C., Tiwari, S., Singh, J. S., & Yadav, A. N. (Eds.). (2020). Microbes in agriculture and environmental development. CRC Press.

Sizer F & Whitney E (2007). Nutrition: concepts and controversies. Cengage Learning pp 26. 15. Tilman D,  Hill J & Lehman  C (2006). Carbon-negative biofuels from low-input highdiversity  grassland biomass. Science 314: 1598–1600.16.

Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International journal of molecular sciences, 10(9), 3722-3742.

Van Maris AJ (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevi-siae: current status. Antonie Van Leeuwenhoek 90: 391–418.17.

Vanni M (2002). Nutrient Cycling by Animals in Freshwater Ecosystems. Annu. Rev. Ecol. Syst 33: 341-370.19.

Verma, S., & Kuila, A. (2019). Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation, 14, 100369.

Viikari L, Alapuranen M, Puranen T, Vehmaanpera J & Siika-Aho M (2007). Thermostable enzymes in lignocellu-lose hydrolysis. Adv. Biochem. Eng. Biotechnol 108: 121–145.

Volpe, A., D’Arpa, S., Del Moro, G., Rossetti, S., Tandoi, V., & Uricchio, V. F. (2012). Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. Water, Air, & Soil Pollution, 223, 1773-1782.

Wu, Z., Bañuelos, G. S., Lin, Z. Q., Liu, Y., Yuan, L., Yin, X., & Li, M. (2015). Biofortification and phytoremediation of selenium in China. Frontiers in plant science, 6, 136.

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
47
View
0
Share