Journal of Integrative Microbial Sciences | Online ISSN 2209-2161
REVIEWS   (Open Access)

The Ecological Significance of Fungal Networks in Soil: Interactions, Nutrient Cycling, and Agricultural Implications

Rabiatul Basria S. M. N. Mydin 1,2*, Siti Salmah Noordin 3

+ Author Affiliations

Microbial Bioactives 2 (1) 1-8 https://doi.org/10.25163/microbbioacts.21101692

Submitted: 01 May 2019 Revised: 15 July 2019  Published: 16 July 2019 


Abstract

Fungi play a crucial role in the soil ecosystem by forming intricate networks that facilitate nutrient exchange, enhance soil structure, and mediate plant-microbe interactions. These fungal networks, primarily composed of mycorrhizal fungi, decompose organic matter, regulate carbon and nitrogen cycles, and promote plant health by fostering symbiotic associations. Their interactions with bacteria, archaea, and other microorganisms further influence soil fertility and stability. This review explores the complexity of fungal networks, their ecological significance, and how environmental factors shape their functionality. By examining various interactions within the soil microbiome, this paper highlights the importance of fungal networks in maintaining ecosystem balance. Understanding these microbial relationships provides valuable insights for sustainable agriculture, soil remediation, and conservation efforts.

Keywords: Fungal Networks, Soil Microbiome, Mycorrhizal Fungi, Nutrient Cycling, Plant-Fungi Interactions, Soil Ecology

References


Aspiras, R. B., Allen, O. N., Harris, R. F., & Chesters, G. (1971). Aggregate stabilization by filamentous microorganisms. Soil Science Society of America Journal, 35(3), 379-382.

Bahram, M., et al. (2018). Structure and function of the global topsoil microbiome. Nature, 560(7717), 233-237.

Brundrett, M. (2009). Mycorrhizal associations and other means of nutrition of vascular plants. Mycorrhiza, 19(8), 651-655.

Carpenter, D., Allen, M. F., & Friese, C. F. (2012). Mycorrhizal fungi influence soil structure and water dynamics. Plant and Soil, 359(1-2), 183-196.

Garbaye, J. (2013). Helper bacteria for mycorrhizae: A new dimension to plant-microbe interactions. New Phytologist, 157(1), 1-3.

Jastrow, J. D., Boutton, T. W., & Miller, R. M. (1998). Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America Journal, 62(2), 507-508.

Lehmann, J., et al. (2017). The importance of soil organic matter in maintaining soil functions. Nature, 528(7580), 60-68.

Miller, R. M., & Jastrow, J. D. (2000). Mycorrhizal fungi influence soil structure. Arbuscular Mycorrhizas, 3, 3-18.

Rillig, M. C. (2004). Arbuscular mycorrhizae and soil aggregation. Soil Biology and Biochemistry, 36(1), 1-8.

Six, J., et al. (2006). Stabilization mechanisms of soil organic matter. Biogeochemistry, 79(1), 53-77.

Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33(2), 141-163.

Van der Heijden, M. G. A., et al. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11(3), 296-310.

Allen, M. F., Swenson, W., Querejeta, J. I., Egerton-Warburton, L. M., & Treseder, K. K. (2003). Ecology of mycorrhizae: A conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology, 41(1), 271-303.

 

Bever, J. D., Platt, T. G., & Morton, E. R. (2010). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annual Review of Microbiology, 64, 321-346.

Crowther, T. W., et al. (2019). The global soil community and its role in carbon cycling. Nature Reviews Microbiology, 17(1), 19-32.

Eastwood, D. C., Floudas, D., Binder, M., Majcherczyk, A., Schneider, P., Aerts, A., & Hibbett, D. S. (2011). The plant cell wall–decomposing machinery underlies the functional diversity of forest fungi. Science, 333(6043), 762-765.

Floudas, D., et al. (2012). The paleoecology of fungal decomposition: New insights into the evolution of lignin decay pathways. Science, 336(6089), 1715-1718.

Hodge, A., Campbell, C. D., & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413(6853), 297-299.

Baldrian, P. (2017). Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiology Reviews, 41(2), 109-130.

Barea, J. M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761-1778.

Bonfante, P., & Anca, I. A. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363-383.

De Boer, W., Folman, L. B., Summerbell, R. C., & Boddy, L. (2005). Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews, 29(4), 795-811.

Deveau, A., Bonito, G., Uehling, J., et al. (2018). Bacterial-fungal interactions: Ecology, mechanisms and challenges. FEMS Microbiology Reviews, 42(3), 335-352.

Frey-Klett, P., Burlinson, P., & Deveau, A. (2011). Bacterial-fungal interactions: Hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews, 75(4), 583-609.

Friesen, M. L., Porter, S. S., Stark, S. C., et al. (2011). Microbially mediated plant functional traits. Annual Review of Ecology, Evolution, and Systematics, 42, 23-46.

Hacquard, S., Spaepen, S., Garrido-Oter, R., & Schulze-Lefert, P. (2015). Interplay between innate immunity and the plant microbiota. Annual Review of Phytopathology, 53, 67-87.

Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). Academic Press.

van der Heijden, M. G. A., Bardgett, R. D., & van Straalen, N. M. (2008). The unseen majority: Soil microbes as drivers of plant diversity and productivity. Ecology Letters, 11(3), 296-310.

Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
54
View
0
Share