References
Balogun, T.A., Iqbal, M.N., Saibu, O.A, Akintubosun, M.O., Lateef, O.M., Nneka, U.C., Abdullateef, O.T. & Omoboyowa, D.A. (2021). Discovery of potential HER2 inhibitors from Mangifera indica for the treatment of HER2-Positive breast cancer: an integrated computational approach. J Biomol Struct Dynam, 39, 1–12. DOI: 10.1080/07391102.2021.1975570
Bishayi, B., Roychowdhury, S., Ghosh, S. & Sengupta, M. (2002). Hepatoprotective and immunomodulatory properties of Tinospora cordifolia in CCl4 intoxicated mature albino rats. J Toxicol Sci. 27(3),139-46. doi: 10.2131/jts.27.139. PMID: 12238138.
Bodun, D.S., Omoboyowa, D.A., Olofinlade, V.F., Ayodeji, A.O., Mauri, A., Ogbodo, U.C. & Balogun, T.A. (2025). In-silico-based lead optimization of hit compounds targeting mitotic kinesin Eg5 for cancer management. In Silico Pharmacology, 13,9 https://doi.org/10.1007/s40203-024-00300-6
Dhama, K., Sachan, S., Khandia, R., Munjal, A., Iqbal, H.M.N., Latheef, S.K., Karthik, K., Samad, H.A., Tiwari, R. & Dadar, M. (2017). Medicinal and Beneficial Health Applications of Tinospora cordifolia (Guduchi): A Miraculous Herb Countering Various Diseases/Disorders and its Immuno-modulatory Effects. Recent Pat Endocr Metab Immune Drug Discov, 10(2), 96-111. doi: 10.2174/1872214811666170301105101.
ECHA (2017). Guidance on information requirements and chemical safety assessment, Version 6.0. Chapter R.7a: Endpoint specific guidance. Helsinki: European Chemicals Agency.
Elekofehinti, O.O. (2023). Computer-aided identification of bioactive compounds from Gongronema latifolium leaf with therapeutic potential against GSK3β, PTB1B and SGLT2. Informatics in Medicine Unlocked, 38, 101202. https://doi.org/10.1016/j.imu.2023.101202
Kwon, S., Bae, H. & Jo, J. (2019) Comprehensive ensemble in QSAR prediction for drug discovery. BMC Bioinf 20:521–530. https://doi.org/10.1186/s12859-019-3135-4
Macalalad, M.A.B. & Gonzales, A.A., (2023). In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules, 28, 5301. https://doi.org/10.3390/molecules28145301
Martin, T. (2016). User’s guide for TEST (version 4.2) (Toxicity Estimation Software Tool): a program to estimate toxicity from molecular structure. EPA/600/R-16/058. Available from: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-tes
Omoboyowa, D. A. (2024). Deciphering phosphodiesterase-5 inhibitors from Aframemum melegueta: computational models against erectile dysfunction. In Silico Pharmacology, 12, 101. https://doi.org/10.1007/s40203-024-00284-3
Omoboyowa, D.A. (2022). Exploring molecular docking with E-pharmacophore and QSAR models to predict potent inhibitors of 14-α-demethylase protease from Moringa spp. Pharmacol Res- Modern Chin Med 4,100147. https://doi.org/10.1016/j.prmcm.2022.100147
Omoboyowa, D.A., Agoi, M.D., Shodehinde, S.A., Saibu, O.A., & Saliu, J.A. (2023). Antidiabetes study of Spondias mombin (Linn) stem bark fractions in high-sucrose diet-induced diabetes in Drosophila melanogaster. Journal of Taibah University Medical Sciences, 18(4), 663e675. DOI: 10.1016/j.jtumed.2023.01.011
Pace, C.N., Scholtz, J.M. & Grimsley, G.R. (2014). Forces stabilizing proteins. FEBS Lett., 588(14), 2177-84. doi: 10.1016/j.febslet.2014.05.006.
Petoumenou, M.I., Pizzo, F., Cester, J., Fernández, A. & Benfenati, E. (2015). Comparison between bioconcentration factor (BCF) data provided by industry to the European Chemicals Agency (ECHA) and data derived from QSAR models. EnvironmentalResearch142(2015)529–534. DOI: 10.1016/j.envres.2015.08.008
Rajalakshmi, M., Eliza, J., Priya, C.E., Nirmala, A.K., & Daisy, P. (2009). Anti-diabetic properties of Tinospora cordifolia stem extracts on streptozotocin-induced diabetic rats. African Journal of Pharmacy and Pharmacology, 3, 171-180.
Roglic, G. (2016). WHO Global Report on Diabetes: A Summary. Int. J. Noncommun. Dis. 1, 3
Saini, J., Marino, D., Badalov, N., Vugelman, M. & Tenner, S. (2023). Drug-Induced Acute Pancreatitis: An Evidence-Based Classification (Revised). Clin Transl Gastroenterol. 14(8), e00621. doi: 10.14309/ctg.0000000000000621.
Sangeetha, M.K.. Priya, C.D. M. and Vasanthi, H.R. (2013). Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes, Phytomedicine, 20, 3-4. https://doi.org/10.1016/j.phymed.2012.11.006.
Singh, R.P., Banerjee, S., Kumar, P.V., Raveesha, K.A. & Rao, A.R. (2006). Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice. Phytomedicine. 13(1-2),74-84. doi: 10.1016/j.phymed.2004.02.013.
Sripriya, N., Ranjith, K.M., Ashwin, K.N., Bhuvaneswari, S. & Udaya, P.N.K. (2019). In silico evaluation of multispecies toxicity of natural compounds, Drug and Chemical Toxicology, 44(5), 480-486 DOI: 10.1080/01480545.2019.1614023
Stanley, P., Prince, M. & Menon, V.P. (2000). Hypoglycemic and other related actions of Tinospora cordifolia roots in alloxan induced diabetic rats. J. Ethnopharmacol. 70,9-15. doi: 10.1016/s0378-8741(99)00136-1.
Sussman, N.B., Arena, V.C., Yu, S., Mazumdar, S. & Thampatty, B.P. (2003). Decision tree SAR models for developmental toxicity based on an FDA/TERIS database. SAR QSAR Environ Res. 14(2), 83-96. doi: 10.1080/1062936031000073126.
Tyagi, R., Singh, A., Chaudhary, K.K. & Yadav, M.K. (2022). Pharmacophore modeling and its applications, Editor(s): Dev Bukhsh Singh, Rajesh Kumar Pathak, Bioinformatics, Academic Press, Pp: 269-289, https://doi.org/10.1016/B978-0-323-89775-4.00009-2.