References
Agashe, S., & Petak, S. (2018). Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovascular Journal, 14(3), 251-256.
https://doi.org/10.14797/mdcj-14-4-251
Aguilar, D., Bozkurt, B., Ramasubbu, K., & Deswal, A. (2009). Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. Journal of the American College of Cardiology, 54(5), 422-428.
https://doi.org/10.1016/j.jacc.2009.04.049
Andersson, C., Olesen, J. B., Hansen, P. R., Weeke, P., Norgaard, M. L., Jorgensen, C. H., Lange, T., Abildstrom, S. Z., Schramm, T. K., Vaag, A., et al. (2010). Metformin treatment is associated with a low risk of mortality in diabetic patients with heart failure: A retrospective nationwide cohort study. Diabetologia, 53(12), 2546-2553.
https://doi.org/10.1007/s00125-010-1906-6
Bando, Y. K., & Murohara, T. (2014). Diabetes-related heart failure. Circulation Journal, 78(3), 576-583.
https://doi.org/10.1253/circj.CJ-13-1564
Barger, P. M., Brandt, J. M., Leone, T. C., Weinheimer, C. J., & Kelly, D. P. (2000). Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. Journal of Clinical Investigation, 105(12), 1723-1730.
https://doi.org/10.1172/JCI9056
Basu, R., Oudit, G. Y., Wang, X., Zhang, L., Ussher, J. R., Lopaschuk, G. D., & Kassiri, Z. (2009). Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. American Journal of Physiology-Heart and Circulatory Physiology, 297(5), H2096-H2108.
https://doi.org/10.1152/ajpheart.00452.2009
Belke, D. D., Swanson, E. A., & Dillmann, W. H. (2004). Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes, 53(12), 3201-3208.
https://doi.org/10.2337/diabetes.53.12.3201
Bhatt, D. L., Szarek, M., Steg, P. G., Cannon, C. P., Leiter, L. A., McGuire, D. K., Lewis, J. B., Riddle, M. C., Voors, A. A., Metra, M., et al. (2021). Sotagliflozin in patients with diabetes and recent worsening heart failure. New England Journal of Medicine, 384(2), 117-128.
https://doi.org/10.1056/NEJMoa2030183
Bodiga, V. L., Eda, S. R., & Bodiga, S. (2014). Advanced glycation end products: Role in pathology of diabetic cardiomyopathy. Heart Failure Reviews, 19(1), 49-63.
https://doi.org/10.1007/s10741-013-9374-y
Boudina, S., & Abel, E. D. (2007). Diabetic cardiomyopathy revisited. Circulation, 115(23), 3213-3223.
https://doi.org/10.1161/CIRCULATIONAHA.106.679597
Boussageon, R., Bejan-Angoulvant, T., Saadatian-Elahi, M., Lafont, S., Bergeonneau, C., Kassai, B., Erpeldinger, S., Wright, J. M., Gueyffier, F., & Cornu, C. (2011). Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: Meta-analysis of randomised controlled trials. BMJ, 343, d4169.
https://doi.org/10.1136/bmj.d4169
Castagno, D., Baird-Gunning, J., Jhund, P. S., Biondi-Zoccai, G., MacDonald, M. R., Petrie, M. C., Gaita, F., McMurray, J. J. (2011). Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: Evidence from a 37,229 patient meta-analysis. American Heart Journal, 162(5), 938-948.e2.
https://doi.org/10.1016/j.ahj.2011.07.030
Chokshi, A., Drosatos, K., Cheema, F. H., Ji, R., Khawaja, T., Yu, S., Kato, T., Khan, R., Takayama, H., Knoll, R., et al. (2012). Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation, 125(23), 2844-2853.
https://doi.org/10.1161/CIRCULATIONAHA.111.060889
Cosentino, F., Grant, P. J., Aboyans, V., Bailey, C. J., Ceriello, A., Delgado, V., Federici, M., Filippatos, G., Grobbee, D. E., Hansen, T. B., et al. (2020). 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European Heart Journal, 41(3), 255-323.
https://doi.org/10.1093/eurheartj/ehz486
Dillmann, W. H. (2019). Diabetic cardiomyopathy. Circulation Research, 124(8), 1160-1162.
https://doi.org/10.1161/CIRCRESAHA.118.314665
Ejiri, K., Miyoshi, T., Kihara, H., Hata, Y., Nagano, T., Takaishi, A., Toda, H., Nanba, S., Nakamura, Y., Akagi, S., et al. (2020). Effect of luseogliflozin on heart failure with preserved ejection fraction in patients with diabetes mellitus. Journal of the American Heart Association, 9(15), e015103.
https://doi.org/10.1161/JAHA.119.015103
Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., Dubourg, O., Kuhl, U., Maisch, B., McKenna, W. J., et al. (2008). Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 29(3), 270-276.
https://doi.org/10.1093/eurheartj/ehm342
Eurich, D. T., Weir, D. L., Majumdar, S. R., Tsuyuki, R. T., Johnson, J. A., Tjosvold, L., Vanderloo, S. E., McAlister, F. A. (2013). Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: Systematic review of observational studies involving 34,000 patients. Circulation: Heart Failure, 6(3), 395-402.
https://doi.org/10.1161/CIRCHEARTFAILURE.112.000162
Faria, A., & Persaud, S. J. (2017). Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacological Therapeutics, 172, 50-62.
https://doi.org/10.1016/j.pharmthera.2016.11.013
Gong, W., Zhang, S., Chen, Y., Shen, J., Zheng, Y., Liu, X., Zhu, M., & Meng, G. (2022). Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Radical Biology and Medicine, 181, 29-42.
https://doi.org/10.1016/j.freeradbiomed.2022.01.028
Green, J. B., Bethel, M. A., Armstrong, P. W., Buse, J. B., Engel, S. S., Garg, J., Josse, R., Kaufman, K. D., Koglin, J., Korn, S., et al. (2015). Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 373(3), 232-242.
https://doi.org/10.1056/NEJMoa1501352
Groop, P. H., Forsblom, C., & Thomas, M. C. (2005). Mechanisms of disease: Pathway-selective insulin resistance and microvascular complications of diabetes. Nature Clinical Practice Endocrinology & Metabolism, 1(3), 100-110.
https://doi.org/10.1038/ncpendmet0046
Grubic Rotkvic, P., Planinic, Z., Liberati Prso, A. M., Sikic, J., Galic, E., & Rotkvic, L. (2021). The mystery of diabetic cardiomyopathy: From early concepts and underlying mechanisms to novel therapeutic possibilities. International Journal of Molecular Sciences, 22(11), 5973.
https://doi.org/10.3390/ijms22115973
Gundewar, S., Calvert, J. W., Jha, S., Toedt-Pingel, I., Ji, S. Y., Nunez, D., Ramachandran, A., Anaya-Cisneros, M., Tian, R., & Lefer, D. J. (2009). Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circulation Research, 104(3), 403-411.
https://doi.org/10.1161/CIRCRESAHA.108.190918
Jia, G., Hill, M. A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circulation Research, 122(5), 624-638.
https://doi.org/10.1161/CIRCRESAHA.117.311586
Jin, W. L., Azuma, K., Mita, T., Goto, H., Kanazawa, A., Shimizu, T., Ikeda, F., Fujitani, Y., Hirose, T., Kawamori, R., et al. (2011). Repetitive hypoglycaemia increases serum adrenaline and induces monocyte adhesion to the endothelium in rat thoracic aorta. Diabetologia, 54(7), 1921-1929.
https://doi.org/10.1007/s00125-011-2141-5
Kannel, W. B., Hjortland, M., & Castelli, W. P. (1974). Role of diabetes in congestive heart failure: The Framingham study. American Journal of Cardiology, 34(1), 29-34.
https://doi.org/10.1016/0002-9149(74)90089-7
Katz, S. D., Hryniewicz, K., Hriljac, I., Balidemaj, K., Dimayuga, C., Hudaihed, A., & Yasskiy, A. (2005). Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation, 111(3), 310-314.
https://doi.org/10.1161/01.CIR.0000153349.77489.CF
Kenny, H. C., & Abel, E. D. (2019). Heart failure in type 2 diabetes mellitus. Circulation Research, 124(1), 121-141.
https://doi.org/10.1161/CIRCRESAHA.118.311371
Kimura, T., Nakamura, K., Miyoshi, T., Yoshida, M., Akazawa, K., Saito, Y., Akagi, S., Ohno, Y., Kondo, M., Miura, D., et al. (2019). Inhibitory effects of tofogliflozin on cardiac hypertrophy in Dahl salt-sensitive and salt-resistant rats fed a high-fat diet. International Heart Journal, 60(3), 728-735.
https://doi.org/10.1536/ihj.18-392
Lago, R. M., Singh, P. P., & Nesto, R. W. (2007). Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: A meta-analysis of randomized clinical trials. Lancet, 370(9586), 1129-1136.
https://doi.org/10.1016/S0140-6736(07)61514-1
Lee, W. S., & Kim, J. (2017). Diabetic cardiomyopathy: Where we are and where we are going. Korean Journal of Internal Medicine, 32(3), 404-421.
https://doi.org/10.3904/kjim.2016.208
Lindegger, N., Hagen, B. M., Marks, A. R., Lederer, W. J., & Kass, R. S. (2009). Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine. Journal of Molecular and Cellular Cardiology, 47(3), 326-334.
https://doi.org/10.1016/j.yjmcc.2009.04.003
Luo, B., Li, B., Wang, W., Liu, X., Xia, Y., Zhang, C., Zhang, M., Zhang, Y., & An, F. (2014). NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLOS ONE, 9(12), e104771.
https://doi.org/10.1371/journal.pone.0104771
Mahabadi, A. A., Berg, M. H., Lehmann, N., Kalsch, H., Bauer, M., Kara, K., Dragano, N., Moebus, S., Jockel, K. H., Erbel, R., et al. (2013). Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The Heinz Nixdorf Recall Study. Journal of the American College of Cardiology, 61(13), 1388-1395.
https://doi.org/10.1016/j.jacc.2012.11.062
Makielski, J. C. (2016). Late sodium current: A mechanism for angina, heart failure, and arrhythmia. Trends in Cardiovascular Medicine, 26(2), 115-122.
https://doi.org/10.1016/j.tcm.2015.05.006
Matthews, V. B., Elliot, R. H., Rudnicka, C., Hricova, J., Herat, L., & Schlaich, M. P. (2017). Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. Journal of Hypertension, 35(10), 2059-2068.
https://doi.org/10.1097/HJH.0000000000001434
McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Bohm, M., Burri, H., Butler, J., Celutkiene, J., Chioncel, O., et al. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42(38), 3599-3726.
https://doi.org/10.1093/eurheartj/ehab368
McMurray, J. J. V., Solomon, S. D., Inzucchi, S. E., Kober, L., Kosiborod, M. N., Martinez, F. A., Ponikowski, P., Sabatine, M. S., Anand, I. S., Belohlavek, J., et al. (2019). Dapagliflozin in patients with heart failure and reduced ejection fraction. New England Journal of Medicine, 381(20), 1995-2008.
https://doi.org/10.1056/NEJMoa1911303
Nakamura, K., Miyoshi, T., Yunoki, K., & Ito, H. (2016). Postprandial hyperlipidemia as a potential residual risk factor. Journal of Cardiology, 67(4), 335-339.
https://doi.org/10.1016/j.jjcc.2015.12.001
Nakamura, M., & Sadoshima, J. (2020). Cardiomyopathy in obesity, insulin resistance, and diabetes. Journal of Physiology, 598(16), 2977-2993.
https://doi.org/10.1113/JP276747
Nie, J., Duan, Q., He, M., Li, X., Wang, B., Zhou, C., Wu, L., Wen, Z., Chen, C., Wang, D. W., et al. (2019). Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na(+) and Ca(2+) handling. Journal of Cellular Physiology, 234(8), 11587-11601.
https://doi.org/10.1002/jcp.27791
Oe, H., Nakamura, K., Kihara, H., Shimada, K., Fukuda, S., Takagi, T., Miyoshi, T., Hirata, K., Yoshikawa, J., Ito, H., et al. (2015). Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: Results of the 3D trial. Cardiovascular Diabetology, 14, 83.
https://doi.org/10.1186/s12933-015-0242-z
Packer, M. (2018). Do DPP-4 inhibitors cause heart failure events by promoting adrenergically mediated cardiotoxicity? Clues from laboratory models and clinical trials. Circulation Research, 122(6), 928-932.
https://doi.org/10.1161/CIRCRESAHA.118.312673
Packer, M., Anker, S. D., Butler, J., Filippatos, G., Pocock, S. J., Carson, P., Januzzi, J., Verma, S., Tsutsui, H., Brueckmann, M., et al. (2020). Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine, 383(15), 1413-1424.
https://doi.org/10.1056/NEJMoa2022190
Pal, P. B., Sonowal, H., Shukla, K., Srivastava, S. K., & Ramana, K. V. (2017). Aldose reductase mediates NLRP3 inflammasome-initiated innate immune response in hyperglycemia-induced Thp1 monocytes and male mice. Endocrinology, 158(11), 3661-3675.
https://doi.org/10.1210/en.2017-00294
Park, T. S., Hu, Y., Noh, H. L., Drosatos, K., Okajima, K., Buchanan, J., Tuinei, J., Homma, S., Jiang, X. C., Abel, E. D., et al. (2008). Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. Journal of Lipid Research, 49(10), 2101-2112.
https://doi.org/10.1194/jlr.M800147-JLR200
Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(3), 263-271.
https://doi.org/10.1016/j.jacc.2013.02.092
Philippaert, K., Kalyaanamoorthy, S., Fatehi, M., Long, W., Soni, S., Byrne, N. J., Barr, A., Singh, J., Wong, J., Palechuk, T., et al. (2021). Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation, 143(22), 2188-2204.
https://doi.org/10.1161/CIRCULATIONAHA.121.053350
Quagliaro, L., Piconi, L., Assaloni, R., Martinelli, L., Motz, E., & Ceriello, A. (2003). Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: The role of protein kinase C and NAD(P)H-oxidase activation. Diabetes, 52(11), 2795-2804.
https://doi.org/10.2337/diabetes.52.11.2795
Quinaglia, T., Oliveira, D. C., Matos-Souza, J. R., & Sposito, A. C. (2019). Diabetic cardiomyopathy: Factual or factoid? Revista da Associação Médica Brasileira, 65(1), 61-69.
https://doi.org/10.1590/1806-9282.65.1.69
Rahman, A., Fujisawa, Y., Nakano, D., Hitomi, H., & Nishiyama, A. (2017). Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clinical and Experimental Pharmacology and Physiology, 44(5), 522-525.
https://doi.org/10.1111/1440-1681.12725
Ramsey, M. W., Goodfellow, J., Jones, C. J., Luddington, L. A., Lewis, M. J., & Henderson, A. H. (1995). Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation, 92(12), 3212-3219.
https://doi.org/10.1161/01.CIR.92.11.3212
Razavi Nematollahi, L., Kitabchi, A. E., Stentz, F. B., Wan, J. Y., Larijani, B. A., Tehrani, M. M., Gozashti, M. H., Omidfar, K., Taheri, E. (2009). Proinflammatory cytokines in response to insulin-induced hypoglycemic stress in healthy subjects. Metabolism, 58(4), 443-448.
https://doi.org/10.1016/j.metabol.2008.10.018
Redfield, M. M., Jacobsen, S. J., Burnett, J. C., Jr., Mahoney, D. W., Bailey, K. R., & Rodeheffer, R. J. (2003). Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic. JAMA, 289(2), 194-202.
https://doi.org/10.1001/jama.289.2.194
Redman, L. M., Smith, S. R., Burton, J. H., Martin, C. K., Il'yasova, D., & Ravussin, E. (2018). Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metabolism, 27(4), 805-815.e4.
https://doi.org/10.1016/j.cmet.2018.02.019
Regan, T. J., Lyons, M. M., Ahmed, S. S., Levinson, G. E., Oldewurtel, H. A., Ahmad, M. R., Haider, B. (1977). Evidence for cardiomyopathy in familial diabetes mellitus. Journal of Clinical Investigation, 60(5), 884-899.
https://doi.org/10.1172/JCI108843
Ritchie, R. H., & Abel, E. D. (2020). Basic mechanisms of diabetic heart disease. Circulation Research, 126(11), 1501-1525.
https://doi.org/10.1161/CIRCRESAHA.120.315913
Rosenstock, J., Perkovic, V., Johansen, O. E., Cooper, M. E., Kahn, S. E., Marx, N., Alexander, J. H., Pencina, M., Toto, R. D., Wanner, C., et al. (2019). Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA, 321(1), 69-79.
https://doi.org/10.1001/jama.2018.18269
Rubler, S., Dlugash, J., Yuceoglu, Y. Z., Kumral, T., Branwood, A. W., & Grishman, A. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. American Journal of Cardiology, 30(6), 595-602.
https://doi.org/10.1016/0002-9149(72)90595-4
Russo, I., & Frangogiannis, N. G. (2016). Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms, and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 90, 84-93.
https://doi.org/10.1016/j.yjmcc.2015.12.011
Sano, M., Chen, S., Imazeki, H., Ochiai, H., & Seino, Y. (2018). Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo-controlled, double-blind clinical trials. Journal of Diabetes Investigation, 9(5), 638-641.
https://doi.org/10.1111/jdi.12726
Sasaki, H., Asanuma, H., Fujita, M., Takahama, H., Wakeno, M., Ito, S., Ogai, A., Asakura, M., Kim, J., Minamino, T., et al. (2009). Metformin prevents progression of heart failure in dogs: Role of AMP-activated protein kinase. Circulation, 119(19), 2568-2577.
https://doi.org/10.1161/CIRCULATIONAHA.108.798561
Scirica, B. M., Bhatt, D. L., Braunwald, E., Steg, P. G., Davidson, J., Hirshberg, B., Ohman, P., Frederich, R., Wiviott, S. D., Hoffman, E. B., et al. (2013). Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. New England Journal of Medicine, 369(14), 1317-1326.
https://doi.org/10.1056/NEJMoa1307684
Shimabukuro, M. (2009). Cardiac adiposity and global cardiometabolic risk: New concept and clinical implication. Circ. Journal, 73(1), 27-34.
https://doi.org/10.1253/circj.CJ-08-1012
Sugawara, R., Sugiyama, H., Nakamura, K., Tohgi, K., Hongo, T., Tsuchiya, M., Momoki, N., Nose, S., Yutani, C., Ikeda, Y., et al. (2021). Electron microscopy revealed massive lipid droplets in cardiomyocytes in a patient with cardiogenic shock following a fulminant type 1 diabetes mellitus. International Heart Journal, 62(1), 197-200.
https://doi.org/10.1536/ihj.20-537
Taegtmeyer, H., Beauloye, C., Harmancey, R., & Hue, L. (2015). Comment on Nolan et al. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes, 64(2), e37.
https://doi.org/10.2337/db15-0655
Takata, T., & Isomoto, H. (2021). Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors: Renoprotective mechanisms beyond glycemic control. International Journal of Molecular Sciences, 22(8), 4374.
https://doi.org/10.3390/ijms22094374
Tang, Z., Wang, P., Dong, C., Zhang, J., Wang, X., & Pei, H. (2022). Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 5913374.
https://doi.org/10.1155/2022/5913374
Tong, M., Saito, T., Zhai, P., Oka, S. I., Mizushima, W., Nakamura, M., Ikeda, S., Shirakabe, A., & Sadoshima, J. (2019). Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circulation Research, 124(9), 1360-1371.
https://doi.org/10.1161/CIRCRESAHA.118.314607
Tuleta, I., & Frangogiannis, N. G. (2021). Diabetic fibrosis. Biochimica et Biophysica Acta Molecular Basis of Disease, 1867(10), 166044.
https://doi.org/10.1016/j.bbadis.2020.166044
Tzoulaki, I., Molokhia, M., Curcin, V., Little, M. P., Millett, C. J., Ng, A., Hughes, R. I., Khunti, K., Wilkins, M. R., Majeed, A., et al. (2009). Risk of cardiovascular disease and all-cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ, 339, b4731.
https://doi.org/10.1136/bmj.b4731
van de Weijer, T., Schrauwen-Hinderling, V. B., & Schrauwen, P. (2011). Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovascular Research, 92(1), 10-18.
https://doi.org/10.1093/cvr/cvr212
Van den Bergh, A., Vanderper, A., Vangheluwe, P., Desjardins, F., Nevelsteen, I., Verreth, W., Wuytack, F., Holvoet, P., Flameng, W., Balligand, J. L., et al. (2008). Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness. Cardiovascular Research, 77(2), 371-379.
https://doi.org/10.1093/cvr/cvm001
Volpe, C. M., O., Villar-Delfino, P. H., Dos Anjos, P. M., F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9, 119.
https://doi.org/10.1038/s41419-017-0135-z
Wang, Z. V., & Hill, J. A. (2015). Diabetic cardiomyopathy: Catabolism driving metabolism. Circulation, 131(9), 771-773.
https://doi.org/10.1161/CIRCULATIONAHA.115.015357
White, W. B., Cannon, C. P., Heller, S. R., Nissen, S. E., Bergenstal, R. M., Bakris, G. L., Perez, A. T., Fleck, P. R., Mehta, C. R., Kupfer, S., et al. (2013). Alogliptin after acute coronary syndrome in patients with type 2 diabetes. New England Journal of Medicine, 369(14), 1327-1335.
https://doi.org/10.1056/NEJMoa1305889
Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., Drazner, M. H., Fonarow, G. C., Geraci, S. A., Horwich, T., Januzzi, J. L., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 62(16), e147-e239.
https://doi.org/10.1161/CIR.0b013e31829e8776
Yoshida, M., Nakamura, K., Miyoshi, T., Yoshida, M., Kondo, M., Akazawa, K., Kimura, T., Ohtsuka, H., Ohno, Y., Miura, D., et al. (2020). Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet. Cardiovascular Diabetology, 19(1), 149.
https://doi.org/10.1186/s12933-020-01132-2
Zeng, C., Wang, R., & Tan, H. (2019). Role of pyroptosis in cardiovascular diseases and its therapeutic implications. International Journal of Biological Sciences, 15(9), 1345-1357.
https://doi.org/10.7150/ijbs.33568
Zheng, H., Zhu, H., Liu, X., Huang, X., Huang, A., & Huang, Y. (2021). Mitophagy in diabetic cardiomyopathy: Roles and mechanisms. Frontiers in Cell and Developmental Biology, 9, 750382.
https://doi.org/10.3389/fcell.2021.750382