Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Diabetes Mellitus and Heart Failure: Mechanistic Insights, Therapeutic Advances, and Multidisciplinary Approaches for Optimal Management

Rashed Faisai Rashed Alharbi 1, Bunaydir Aali Almotairi 1*, Sulaiman Ahmed Almansour 1, Bandar Zaben Muhammad Alharbi 1, Bander Batti Alrasheedi 1, Abdulaziz Ahmad Alrashidi 1, Amani Ayyadhah Alanazi 1, Soliman Mohammed Alehaidib 1, Ahlam Mohammed Alzahrani 1, Maysam Taysir Almegbel 1, Turki Suleiman Aqeel Al-Shammari 1, Talal Ali Saleh Al Shammari 1, Sultan Abdulaziz Altheyab 1, Ammash Alsharari 1, Nawaf Subhi Dobayan Alenazi 1, Adel Mansour Alzahrani 1

+ Author Affiliations

Journal of Angiotherapy 7 (2) 1-10 https://doi.org/10.25163/angiotherapy.7210125

Submitted: 17 October 2023 Revised: 29 December 2023  Published: 30 December 2023 


Abstract

Diabetes mellitus and heart failure are intricately linked through shared pathophysiological mechanisms, including insulin resistance, oxidative stress, and lipotoxicity, which collectively contribute to diabetic cardiomyopathy. This unique cardiac complication results in both systolic and diastolic dysfunction, further complicating the management of heart failure in diabetic patients. Glycemic control plays a pivotal role in mitigating cardiovascular risks, with antidiabetic medications like SGLT2 inhibitors and GLP-1 receptor agonists demonstrating significant benefits beyond glucose regulation, including reductions in heart failure hospitalizations and improved overall cardiovascular outcomes. The complexity of managing diabetes-related heart failure necessitates a multidisciplinary approach, integrating expertise from cardiology and endocrinology to develop individualized treatment strategies, enhance patient education, and ensure adherence to therapeutic regimens. Furthermore, advancing our understanding of the interplay between diabetes and heart failure requires ongoing research into long-term effects of combined interventions, encompassing lifestyle modifications, pharmacological innovations, and emerging therapies. This review emphasizes the importance of collaboration and innovation in addressing the multifaceted relationship between these conditions. Effective management strategies not only improve clinical outcomes but also enhance the quality of life for individuals with diabetes, ultimately reducing the global burden of heart failure.

Keywords: Diabetic cardiomyopathy, Heart failure, SGLT2 inhibitors, Glycemic control, Multidisciplinary care

References


Agashe, S., & Petak, S. (2018). Cardiac autonomic neuropathy in diabetes mellitus. Methodist Debakey Cardiovascular Journal, 14(3), 251-256.

https://doi.org/10.14797/mdcj-14-4-251

 

Aguilar, D., Bozkurt, B., Ramasubbu, K., & Deswal, A. (2009). Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. Journal of the American College of Cardiology, 54(5), 422-428.

https://doi.org/10.1016/j.jacc.2009.04.049

 

Andersson, C., Olesen, J. B., Hansen, P. R., Weeke, P., Norgaard, M. L., Jorgensen, C. H., Lange, T., Abildstrom, S. Z., Schramm, T. K., Vaag, A., et al. (2010). Metformin treatment is associated with a low risk of mortality in diabetic patients with heart failure: A retrospective nationwide cohort study. Diabetologia, 53(12), 2546-2553.

https://doi.org/10.1007/s00125-010-1906-6

 

Bando, Y. K., & Murohara, T. (2014). Diabetes-related heart failure. Circulation Journal, 78(3), 576-583.

https://doi.org/10.1253/circj.CJ-13-1564

 

Barger, P. M., Brandt, J. M., Leone, T. C., Weinheimer, C. J., & Kelly, D. P. (2000). Deactivation of peroxisome proliferator-activated receptor-alpha during cardiac hypertrophic growth. Journal of Clinical Investigation, 105(12), 1723-1730.

https://doi.org/10.1172/JCI9056

 

Basu, R., Oudit, G. Y., Wang, X., Zhang, L., Ussher, J. R., Lopaschuk, G. D., & Kassiri, Z. (2009). Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. American Journal of Physiology-Heart and Circulatory Physiology, 297(5), H2096-H2108.

https://doi.org/10.1152/ajpheart.00452.2009

 

Belke, D. D., Swanson, E. A., & Dillmann, W. H. (2004). Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes, 53(12), 3201-3208.

https://doi.org/10.2337/diabetes.53.12.3201

 

Bhatt, D. L., Szarek, M., Steg, P. G., Cannon, C. P., Leiter, L. A., McGuire, D. K., Lewis, J. B., Riddle, M. C., Voors, A. A., Metra, M., et al. (2021). Sotagliflozin in patients with diabetes and recent worsening heart failure. New England Journal of Medicine, 384(2), 117-128.

https://doi.org/10.1056/NEJMoa2030183

 

Bodiga, V. L., Eda, S. R., & Bodiga, S. (2014). Advanced glycation end products: Role in pathology of diabetic cardiomyopathy. Heart Failure Reviews, 19(1), 49-63.

https://doi.org/10.1007/s10741-013-9374-y

 

Boudina, S., & Abel, E. D. (2007). Diabetic cardiomyopathy revisited. Circulation, 115(23), 3213-3223.

https://doi.org/10.1161/CIRCULATIONAHA.106.679597

 

Boussageon, R., Bejan-Angoulvant, T., Saadatian-Elahi, M., Lafont, S., Bergeonneau, C., Kassai, B., Erpeldinger, S., Wright, J. M., Gueyffier, F., & Cornu, C. (2011). Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: Meta-analysis of randomised controlled trials. BMJ, 343, d4169.

https://doi.org/10.1136/bmj.d4169

 

Castagno, D., Baird-Gunning, J., Jhund, P. S., Biondi-Zoccai, G., MacDonald, M. R., Petrie, M. C., Gaita, F., McMurray, J. J. (2011). Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: Evidence from a 37,229 patient meta-analysis. American Heart Journal, 162(5), 938-948.e2.

https://doi.org/10.1016/j.ahj.2011.07.030

 

Chokshi, A., Drosatos, K., Cheema, F. H., Ji, R., Khawaja, T., Yu, S., Kato, T., Khan, R., Takayama, H., Knoll, R., et al. (2012). Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation, 125(23), 2844-2853.

https://doi.org/10.1161/CIRCULATIONAHA.111.060889

 

Cosentino, F., Grant, P. J., Aboyans, V., Bailey, C. J., Ceriello, A., Delgado, V., Federici, M., Filippatos, G., Grobbee, D. E., Hansen, T. B., et al. (2020). 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. European Heart Journal, 41(3), 255-323.

https://doi.org/10.1093/eurheartj/ehz486

 

Dillmann, W. H. (2019). Diabetic cardiomyopathy. Circulation Research, 124(8), 1160-1162.

https://doi.org/10.1161/CIRCRESAHA.118.314665

 

Ejiri, K., Miyoshi, T., Kihara, H., Hata, Y., Nagano, T., Takaishi, A., Toda, H., Nanba, S., Nakamura, Y., Akagi, S., et al. (2020). Effect of luseogliflozin on heart failure with preserved ejection fraction in patients with diabetes mellitus. Journal of the American Heart Association, 9(15), e015103.

https://doi.org/10.1161/JAHA.119.015103

 

Elliott, P., Andersson, B., Arbustini, E., Bilinska, Z., Cecchi, F., Charron, P., Dubourg, O., Kuhl, U., Maisch, B., McKenna, W. J., et al. (2008). Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. European Heart Journal, 29(3), 270-276.

https://doi.org/10.1093/eurheartj/ehm342

 

Eurich, D. T., Weir, D. L., Majumdar, S. R., Tsuyuki, R. T., Johnson, J. A., Tjosvold, L., Vanderloo, S. E., McAlister, F. A. (2013). Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: Systematic review of observational studies involving 34,000 patients. Circulation: Heart Failure, 6(3), 395-402.

https://doi.org/10.1161/CIRCHEARTFAILURE.112.000162

 

Faria, A., & Persaud, S. J. (2017). Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacological Therapeutics, 172, 50-62.

https://doi.org/10.1016/j.pharmthera.2016.11.013

 

Gong, W., Zhang, S., Chen, Y., Shen, J., Zheng, Y., Liu, X., Zhu, M., & Meng, G. (2022). Protective role of hydrogen sulfide against diabetic cardiomyopathy via alleviating necroptosis. Free Radical Biology and Medicine, 181, 29-42.

https://doi.org/10.1016/j.freeradbiomed.2022.01.028

 

Green, J. B., Bethel, M. A., Armstrong, P. W., Buse, J. B., Engel, S. S., Garg, J., Josse, R., Kaufman, K. D., Koglin, J., Korn, S., et al. (2015). Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. New England Journal of Medicine, 373(3), 232-242.

https://doi.org/10.1056/NEJMoa1501352

 

Groop, P. H., Forsblom, C., & Thomas, M. C. (2005). Mechanisms of disease: Pathway-selective insulin resistance and microvascular complications of diabetes. Nature Clinical Practice Endocrinology & Metabolism, 1(3), 100-110.

https://doi.org/10.1038/ncpendmet0046

 

Grubic Rotkvic, P., Planinic, Z., Liberati Prso, A. M., Sikic, J., Galic, E., & Rotkvic, L. (2021). The mystery of diabetic cardiomyopathy: From early concepts and underlying mechanisms to novel therapeutic possibilities. International Journal of Molecular Sciences, 22(11), 5973.

https://doi.org/10.3390/ijms22115973

 

Gundewar, S., Calvert, J. W., Jha, S., Toedt-Pingel, I., Ji, S. Y., Nunez, D., Ramachandran, A., Anaya-Cisneros, M., Tian, R., & Lefer, D. J. (2009). Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circulation Research, 104(3), 403-411.

https://doi.org/10.1161/CIRCRESAHA.108.190918

 

Jia, G., Hill, M. A., & Sowers, J. R. (2018). Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circulation Research, 122(5), 624-638.

https://doi.org/10.1161/CIRCRESAHA.117.311586

 

Jin, W. L., Azuma, K., Mita, T., Goto, H., Kanazawa, A., Shimizu, T., Ikeda, F., Fujitani, Y., Hirose, T., Kawamori, R., et al. (2011). Repetitive hypoglycaemia increases serum adrenaline and induces monocyte adhesion to the endothelium in rat thoracic aorta. Diabetologia, 54(7), 1921-1929.

https://doi.org/10.1007/s00125-011-2141-5

 

Kannel, W. B., Hjortland, M., & Castelli, W. P. (1974). Role of diabetes in congestive heart failure: The Framingham study. American Journal of Cardiology, 34(1), 29-34.

https://doi.org/10.1016/0002-9149(74)90089-7

 

Katz, S. D., Hryniewicz, K., Hriljac, I., Balidemaj, K., Dimayuga, C., Hudaihed, A., & Yasskiy, A. (2005). Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation, 111(3), 310-314.

https://doi.org/10.1161/01.CIR.0000153349.77489.CF

 

Kenny, H. C., & Abel, E. D. (2019). Heart failure in type 2 diabetes mellitus. Circulation Research, 124(1), 121-141.

https://doi.org/10.1161/CIRCRESAHA.118.311371

 

Kimura, T., Nakamura, K., Miyoshi, T., Yoshida, M., Akazawa, K., Saito, Y., Akagi, S., Ohno, Y., Kondo, M., Miura, D., et al. (2019). Inhibitory effects of tofogliflozin on cardiac hypertrophy in Dahl salt-sensitive and salt-resistant rats fed a high-fat diet. International Heart Journal, 60(3), 728-735.

https://doi.org/10.1536/ihj.18-392

 

Lago, R. M., Singh, P. P., & Nesto, R. W. (2007). Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: A meta-analysis of randomized clinical trials. Lancet, 370(9586), 1129-1136.

https://doi.org/10.1016/S0140-6736(07)61514-1

 

Lee, W. S., & Kim, J. (2017). Diabetic cardiomyopathy: Where we are and where we are going. Korean Journal of Internal Medicine, 32(3), 404-421.

https://doi.org/10.3904/kjim.2016.208

 

Lindegger, N., Hagen, B. M., Marks, A. R., Lederer, W. J., & Kass, R. S. (2009). Diastolic transient inward current in long QT syndrome type 3 is caused by Ca2+ overload and inhibited by ranolazine. Journal of Molecular and Cellular Cardiology, 47(3), 326-334.

https://doi.org/10.1016/j.yjmcc.2009.04.003

 

Luo, B., Li, B., Wang, W., Liu, X., Xia, Y., Zhang, C., Zhang, M., Zhang, Y., & An, F. (2014). NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLOS ONE, 9(12), e104771.

https://doi.org/10.1371/journal.pone.0104771

 

Mahabadi, A. A., Berg, M. H., Lehmann, N., Kalsch, H., Bauer, M., Kara, K., Dragano, N., Moebus, S., Jockel, K. H., Erbel, R., et al. (2013). Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: The Heinz Nixdorf Recall Study. Journal of the American College of Cardiology, 61(13), 1388-1395.

https://doi.org/10.1016/j.jacc.2012.11.062

 

Makielski, J. C. (2016). Late sodium current: A mechanism for angina, heart failure, and arrhythmia. Trends in Cardiovascular Medicine, 26(2), 115-122.

https://doi.org/10.1016/j.tcm.2015.05.006

 

Matthews, V. B., Elliot, R. H., Rudnicka, C., Hricova, J., Herat, L., & Schlaich, M. P. (2017). Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. Journal of Hypertension, 35(10), 2059-2068.

https://doi.org/10.1097/HJH.0000000000001434

 

McDonagh, T. A., Metra, M., Adamo, M., Gardner, R. S., Baumbach, A., Bohm, M., Burri, H., Butler, J., Celutkiene, J., Chioncel, O., et al. (2021). 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. European Heart Journal, 42(38), 3599-3726.

https://doi.org/10.1093/eurheartj/ehab368

 

McMurray, J. J. V., Solomon, S. D., Inzucchi, S. E., Kober, L., Kosiborod, M. N., Martinez, F. A., Ponikowski, P., Sabatine, M. S., Anand, I. S., Belohlavek, J., et al. (2019). Dapagliflozin in patients with heart failure and reduced ejection fraction. New England Journal of Medicine, 381(20), 1995-2008.

https://doi.org/10.1056/NEJMoa1911303

 

Nakamura, K., Miyoshi, T., Yunoki, K., & Ito, H. (2016). Postprandial hyperlipidemia as a potential residual risk factor. Journal of Cardiology, 67(4), 335-339.

https://doi.org/10.1016/j.jjcc.2015.12.001

 

Nakamura, M., & Sadoshima, J. (2020). Cardiomyopathy in obesity, insulin resistance, and diabetes. Journal of Physiology, 598(16), 2977-2993.

https://doi.org/10.1113/JP276747

 

Nie, J., Duan, Q., He, M., Li, X., Wang, B., Zhou, C., Wu, L., Wen, Z., Chen, C., Wang, D. W., et al. (2019). Ranolazine prevents pressure overload-induced cardiac hypertrophy and heart failure by restoring aberrant Na(+) and Ca(2+) handling. Journal of Cellular Physiology, 234(8), 11587-11601.

https://doi.org/10.1002/jcp.27791

 

Oe, H., Nakamura, K., Kihara, H., Shimada, K., Fukuda, S., Takagi, T., Miyoshi, T., Hirata, K., Yoshikawa, J., Ito, H., et al. (2015). Comparison of effects of sitagliptin and voglibose on left ventricular diastolic dysfunction in patients with type 2 diabetes: Results of the 3D trial. Cardiovascular Diabetology, 14, 83.

https://doi.org/10.1186/s12933-015-0242-z

 

Packer, M. (2018). Do DPP-4 inhibitors cause heart failure events by promoting adrenergically mediated cardiotoxicity? Clues from laboratory models and clinical trials. Circulation Research, 122(6), 928-932.

https://doi.org/10.1161/CIRCRESAHA.118.312673

 

Packer, M., Anker, S. D., Butler, J., Filippatos, G., Pocock, S. J., Carson, P., Januzzi, J., Verma, S., Tsutsui, H., Brueckmann, M., et al. (2020). Cardiovascular and renal outcomes with empagliflozin in heart failure. New England Journal of Medicine, 383(15), 1413-1424.

https://doi.org/10.1056/NEJMoa2022190

 

Pal, P. B., Sonowal, H., Shukla, K., Srivastava, S. K., & Ramana, K. V. (2017). Aldose reductase mediates NLRP3 inflammasome-initiated innate immune response in hyperglycemia-induced Thp1 monocytes and male mice. Endocrinology, 158(11), 3661-3675.

https://doi.org/10.1210/en.2017-00294

 

Park, T. S., Hu, Y., Noh, H. L., Drosatos, K., Okajima, K., Buchanan, J., Tuinei, J., Homma, S., Jiang, X. C., Abel, E. D., et al. (2008). Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. Journal of Lipid Research, 49(10), 2101-2112.

https://doi.org/10.1194/jlr.M800147-JLR200

 

Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(3), 263-271.

https://doi.org/10.1016/j.jacc.2013.02.092

 

Philippaert, K., Kalyaanamoorthy, S., Fatehi, M., Long, W., Soni, S., Byrne, N. J., Barr, A., Singh, J., Wong, J., Palechuk, T., et al. (2021). Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation, 143(22), 2188-2204.

https://doi.org/10.1161/CIRCULATIONAHA.121.053350

 

Quagliaro, L., Piconi, L., Assaloni, R., Martinelli, L., Motz, E., & Ceriello, A. (2003). Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: The role of protein kinase C and NAD(P)H-oxidase activation. Diabetes, 52(11), 2795-2804.

https://doi.org/10.2337/diabetes.52.11.2795

 

Quinaglia, T., Oliveira, D. C., Matos-Souza, J. R., & Sposito, A. C. (2019). Diabetic cardiomyopathy: Factual or factoid? Revista da Associação Médica Brasileira, 65(1), 61-69.

https://doi.org/10.1590/1806-9282.65.1.69

 

Rahman, A., Fujisawa, Y., Nakano, D., Hitomi, H., & Nishiyama, A. (2017). Effect of a selective SGLT2 inhibitor, luseogliflozin, on circadian rhythm of sympathetic nervous function and locomotor activities in metabolic syndrome rats. Clinical and Experimental Pharmacology and Physiology, 44(5), 522-525.

https://doi.org/10.1111/1440-1681.12725

 

Ramsey, M. W., Goodfellow, J., Jones, C. J., Luddington, L. A., Lewis, M. J., & Henderson, A. H. (1995). Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation, 92(12), 3212-3219.

https://doi.org/10.1161/01.CIR.92.11.3212

 

Razavi Nematollahi, L., Kitabchi, A. E., Stentz, F. B., Wan, J. Y., Larijani, B. A., Tehrani, M. M., Gozashti, M. H., Omidfar, K., Taheri, E. (2009). Proinflammatory cytokines in response to insulin-induced hypoglycemic stress in healthy subjects. Metabolism, 58(4), 443-448.

https://doi.org/10.1016/j.metabol.2008.10.018

 

Redfield, M. M., Jacobsen, S. J., Burnett, J. C., Jr., Mahoney, D. W., Bailey, K. R., & Rodeheffer, R. J. (2003). Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic. JAMA, 289(2), 194-202.

https://doi.org/10.1001/jama.289.2.194

 

Redman, L. M., Smith, S. R., Burton, J. H., Martin, C. K., Il'yasova, D., & Ravussin, E. (2018). Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metabolism, 27(4), 805-815.e4.

https://doi.org/10.1016/j.cmet.2018.02.019

 

Regan, T. J., Lyons, M. M., Ahmed, S. S., Levinson, G. E., Oldewurtel, H. A., Ahmad, M. R., Haider, B. (1977). Evidence for cardiomyopathy in familial diabetes mellitus. Journal of Clinical Investigation, 60(5), 884-899.

https://doi.org/10.1172/JCI108843

 

Ritchie, R. H., & Abel, E. D. (2020). Basic mechanisms of diabetic heart disease. Circulation Research, 126(11), 1501-1525.

https://doi.org/10.1161/CIRCRESAHA.120.315913

 

Rosenstock, J., Perkovic, V., Johansen, O. E., Cooper, M. E., Kahn, S. E., Marx, N., Alexander, J. H., Pencina, M., Toto, R. D., Wanner, C., et al. (2019). Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA randomized clinical trial. JAMA, 321(1), 69-79.

https://doi.org/10.1001/jama.2018.18269

 

Rubler, S., Dlugash, J., Yuceoglu, Y. Z., Kumral, T., Branwood, A. W., & Grishman, A. (1972). New type of cardiomyopathy associated with diabetic glomerulosclerosis. American Journal of Cardiology, 30(6), 595-602.

https://doi.org/10.1016/0002-9149(72)90595-4

 

Russo, I., & Frangogiannis, N. G. (2016). Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms, and therapeutic opportunities. Journal of Molecular and Cellular Cardiology, 90, 84-93.

https://doi.org/10.1016/j.yjmcc.2015.12.011

 

Sano, M., Chen, S., Imazeki, H., Ochiai, H., & Seino, Y. (2018). Changes in heart rate in patients with type 2 diabetes mellitus after treatment with luseogliflozin: Subanalysis of placebo-controlled, double-blind clinical trials. Journal of Diabetes Investigation, 9(5), 638-641.

https://doi.org/10.1111/jdi.12726

 

Sasaki, H., Asanuma, H., Fujita, M., Takahama, H., Wakeno, M., Ito, S., Ogai, A., Asakura, M., Kim, J., Minamino, T., et al. (2009). Metformin prevents progression of heart failure in dogs: Role of AMP-activated protein kinase. Circulation, 119(19), 2568-2577.

https://doi.org/10.1161/CIRCULATIONAHA.108.798561

 

Scirica, B. M., Bhatt, D. L., Braunwald, E., Steg, P. G., Davidson, J., Hirshberg, B., Ohman, P., Frederich, R., Wiviott, S. D., Hoffman, E. B., et al. (2013). Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. New England Journal of Medicine, 369(14), 1317-1326.

https://doi.org/10.1056/NEJMoa1307684

 

Shimabukuro, M. (2009). Cardiac adiposity and global cardiometabolic risk: New concept and clinical implication. Circ. Journal, 73(1), 27-34.

https://doi.org/10.1253/circj.CJ-08-1012

 

Sugawara, R., Sugiyama, H., Nakamura, K., Tohgi, K., Hongo, T., Tsuchiya, M., Momoki, N., Nose, S., Yutani, C., Ikeda, Y., et al. (2021). Electron microscopy revealed massive lipid droplets in cardiomyocytes in a patient with cardiogenic shock following a fulminant type 1 diabetes mellitus. International Heart Journal, 62(1), 197-200.

https://doi.org/10.1536/ihj.20-537

 

Taegtmeyer, H., Beauloye, C., Harmancey, R., & Hue, L. (2015). Comment on Nolan et al. Insulin resistance as a physiological defense against metabolic stress: Implications for the management of subsets of type 2 diabetes. Diabetes, 64(2), e37.

https://doi.org/10.2337/db15-0655

 

Takata, T., & Isomoto, H. (2021). Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors: Renoprotective mechanisms beyond glycemic control. International Journal of Molecular Sciences, 22(8), 4374.

https://doi.org/10.3390/ijms22094374

 

Tang, Z., Wang, P., Dong, C., Zhang, J., Wang, X., & Pei, H. (2022). Oxidative stress signaling mediated pathogenesis of diabetic cardiomyopathy. Oxidative Medicine and Cellular Longevity, 2022, 5913374.

https://doi.org/10.1155/2022/5913374

 

Tong, M., Saito, T., Zhai, P., Oka, S. I., Mizushima, W., Nakamura, M., Ikeda, S., Shirakabe, A., & Sadoshima, J. (2019). Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circulation Research, 124(9), 1360-1371.

https://doi.org/10.1161/CIRCRESAHA.118.314607

 

Tuleta, I., & Frangogiannis, N. G. (2021). Diabetic fibrosis. Biochimica et Biophysica Acta Molecular Basis of Disease, 1867(10), 166044.

https://doi.org/10.1016/j.bbadis.2020.166044

 

Tzoulaki, I., Molokhia, M., Curcin, V., Little, M. P., Millett, C. J., Ng, A., Hughes, R. I., Khunti, K., Wilkins, M. R., Majeed, A., et al. (2009). Risk of cardiovascular disease and all-cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ, 339, b4731.

https://doi.org/10.1136/bmj.b4731

 

van de Weijer, T., Schrauwen-Hinderling, V. B., & Schrauwen, P. (2011). Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovascular Research, 92(1), 10-18.

https://doi.org/10.1093/cvr/cvr212

 

Van den Bergh, A., Vanderper, A., Vangheluwe, P., Desjardins, F., Nevelsteen, I., Verreth, W., Wuytack, F., Holvoet, P., Flameng, W., Balligand, J. L., et al. (2008). Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness. Cardiovascular Research, 77(2), 371-379.

https://doi.org/10.1093/cvr/cvm001

 

Volpe, C. M., O., Villar-Delfino, P. H., Dos Anjos, P. M., F., & Nogueira-Machado, J. A. (2018). Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death and Disease, 9, 119.

https://doi.org/10.1038/s41419-017-0135-z

 

Wang, Z. V., & Hill, J. A. (2015). Diabetic cardiomyopathy: Catabolism driving metabolism. Circulation, 131(9), 771-773.

https://doi.org/10.1161/CIRCULATIONAHA.115.015357

 

White, W. B., Cannon, C. P., Heller, S. R., Nissen, S. E., Bergenstal, R. M., Bakris, G. L., Perez, A. T., Fleck, P. R., Mehta, C. R., Kupfer, S., et al. (2013). Alogliptin after acute coronary syndrome in patients with type 2 diabetes. New England Journal of Medicine, 369(14), 1327-1335.

https://doi.org/10.1056/NEJMoa1305889

 

Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., Drazner, M. H., Fonarow, G. C., Geraci, S. A., Horwich, T., Januzzi, J. L., et al. (2013). 2013 ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 62(16), e147-e239.

https://doi.org/10.1161/CIR.0b013e31829e8776

 

Yoshida, M., Nakamura, K., Miyoshi, T., Yoshida, M., Kondo, M., Akazawa, K., Kimura, T., Ohtsuka, H., Ohno, Y., Miura, D., et al. (2020). Combination therapy with pemafibrate (K-877) and pitavastatin improves vascular endothelial dysfunction in dahl/salt-sensitive rats fed a high-salt and high-fat diet. Cardiovascular Diabetology, 19(1), 149.

https://doi.org/10.1186/s12933-020-01132-2

 

Zeng, C., Wang, R., & Tan, H. (2019). Role of pyroptosis in cardiovascular diseases and its therapeutic implications. International Journal of Biological Sciences, 15(9), 1345-1357.

https://doi.org/10.7150/ijbs.33568

 

Zheng, H., Zhu, H., Liu, X., Huang, X., Huang, A., & Huang, Y. (2021). Mitophagy in diabetic cardiomyopathy: Roles and mechanisms. Frontiers in Cell and Developmental Biology, 9, 750382.

https://doi.org/10.3389/fcell.2021.750382

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



0
Save
0
Citation
93
View
0
Share