Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Investigating the Impact of Tablet Coatings on Gastrointestinal Tract Residence Time and Drug Bioavailability: A Comparative Study of Different Coating Materials

Mohosin Kabir 1*, Nadimbhai Salimbhai Vahora 1

+ Author Affiliations

Journal of Angiotherapy 8 (12) 1-10 https://doi.org/10.25163/angiotherapy.81210103

Submitted: 19 October 2024 Revised: 14 December 2024  Published: 15 December 2024 


Abstract

Tablet coatings are crucial for optimizing pharmaceutical formulations by controlling drug release, stability, and bioavailability. The selection of coating material must be tailored to the specific pharmacokinetic properties and therapeutic goals of the drug. This study focuses on three major types of coatings: enteric polymers, lipid-based coatings, and nanoparticle coatings, each offering unique benefits for different drug delivery systems on Gastrointestinal (GSI).  Enteric polymers protect drugs from gastric degradation, ensuring targeted release in the intestines, making them ideal for pH-sensitive drugs. Lipid-based coatings are effective for sustained-release formulations, providing controlled drug release over extended periods, which is particularly beneficial for managing chronic conditions. Nanoparticle coatings offer precise drug delivery, allowing for targeted treatment with reduced systemic side effects, and are especially valuable in oncology for delivering chemotherapeutic agents directly to tumor cells. The choice of coating material is guided by preclinical and clinical studies, which evaluate the physicochemical properties, solubility, stability, and permeability of coating materials under simulated gastrointestinal conditions. Advances in nanotechnology and predictive modeling are transforming drug delivery systems, providing opportunities for hybrid coatings that combine the strengths of different materials. These developments promise enhanced precision, scalability, and efficiency in drug formulation. This study highlights the importance of aligning coating properties with therapeutic goals and emphasizes the potential for hybrid systems, 3D printing, and nanotechnology to create more effective, patient-centric drug delivery solutions. Such innovations are expected to improve therapeutic outcomes, reduce dosing frequency, and enhance patient adherence, ultimately advancing the field of drug delivery and improving patient care.

Keywords: Tablet Coatings, Drug Delivery Systems, Enteric Polymers, Lipid-based Coatings, Gastrointestinal (GSI). Nanoparticle Coatings

References


Ahmed, S. A. N., Patil, S. R., Khan, M. K. S., & Khan, M. S. (2021). Tablet coating techniques: Concept and recent trends. International Journal of Pharmaceutical Sciences Review and Research, 66(1), 43-53.http://dx.doi.org/10.47583/ijpsrr.2021.v66i01.010

Albertini, B., Sabatino, M. D., Melegari, C., & Passerini, N. (2015). Formulation of spray congealed microparticles with self-emulsifying ability for enhanced glibenclamide dissolution performance. Journal of Microencapsulation, 32(2), 181-192.https://doi.org/10.3109/02652048.2014.985341

Arafat, M., Sakkal, M., Bostanudin, M. F., Alhanbali, O. A., Yuvaraju, P., Beiram, R., ... & AbuRuz, S. (2023). Enteric-coating film effect on the delayed drug release of pantoprazole gastro-resistant generic tablets. F1000Research, 12.https://doi.org/10.12688/f1000research.140607.1

Arora, R., Rathore, K. S., & Bharakatiya, M. (2019). An overview on tablet coating. Asian Journal of Pharmaceutical Research and Development, 7(4), 89-92.https://doi.org/10.22270/ajprd.v7i4.547

Balducci, A. G., Colombo, G., Corace, G., Cavallari, C., Rodriguez, L., Buttini, F., ... & Rossi, A. (2011). Layered lipid microcapsules for mesalazine delayed-release in children. International journal of pharmaceutics, 421(2), 293-300.https://doi.org/10.1016/j.ijpharm.2011.09.043

Bansari, M., Vyas, J., & Upadhyay, U. A concise review on tablet in tablet.

Barimani, S., & Kleinebudde, P. (2018). Monitoring of tablet coating processes with colored coatings. Talanta, 178, 686-697.https://doi.org/10.1016/j.talanta.2017.10.008

Basu, A., De, A., & Dey, S. (2013). Techniques of tablet coating: concepts and advancements. A comprehensive review. RRJPPS, 2(4), 1-6.

Bhardwaj, V. (2022). Design, Synthesis and Applications of Novel Supramolecular Assemblies (Doctoral dissertation, Maharaja Sayajirao University of Baroda (India)).

Chambliss, W. G. (2022). Conventional and specialized coating pans. In Pharmaceutical pelletization technology (pp. 15-38). CRC Press.

Chen, G., et al. (2019). Advanced materials for controlled drug delivery. Materials Today, 22(1), 36–47.https://doi.org/10.3389/fbioe.2023.1177151

Dasalkar, A. M., & Munde, V. S. (2023). A review: film coated tablets. Intl J Adv Eng Management, 5(2), 462-474.

Dineshmohan, S. (2015). Effect of hydrophilic and hydrophobic polymer combinations in vildagliptin sustained release tablets: Fabrication and in vitro characterization. Asian Journal of Pharmaceutics (AJP), 9(4).https://doi.org/10.22377/ajp.v9i4.471

DOI: 10.35629/5252-0502462474

Dumpa, M., Kamadi, M., & Vadaga, A. (2024). Comprehensive Review on Tablet Coating Problems and Remedies. Journal of Pharma Insights and Research, 2(1), 042-049.https://jopir.in/index.php/journals/article/view/76

El-Malah, Y., & Nazzal, S. (2010). Preparation of delayed release tablet dosage forms by compression coating: Effect of coating material on theophylline release. Pharmaceutical Development and Technology, 15(3), 305-310.https://doi.org/10.3109/10837450903188519

Fortuni, B., Inose, T., Ricci, M., Fujita, Y., Van Zundert, I., Masuhara, A., et al. (2019). Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems. Sci. Rep. 9:2666. doi: 10.1038/s41598-019-39107-3

Gaikwad, S. S., & Kshirsagar, S. J. (2020). Review on Tablet in Tablet techniques. Beni-Suef university journal of basic and applied sciences, 9, 1-7.https://doi.org/10.1186/s43088-019-0027-7

Ganguly, D., Ghosh, S., Chakraborty, P., Mitra, S., Chatterjee, S., Panja, S., & Choudhury, A. (2022). A brief review on recent advancement of tablet coating technology. Journal of Applied Pharmaceutical Research, 10(1), 07-14.https://doi.org/10.18231/J.JOAPR.2022.7.14

J. Singh, P. Nayak, J. Polym. Sci. 2023, 61(22), 2828. https://doi.org/10.1002/pol.20230403

Khan, H., Khan, A. R., Maheen, S., Hanif, M., Raza, S. A., Sarfraz, R. M., ... & Andleeb, M. (2015). Preparation and in vitro evaluation of sustained release microparticles of an antidiabetic drug. Latin American Journal of Pharmacy, 34, 1931-1939.

Khodaverdi, H., Zeini, M. S., Moghaddam, M. M., Vazifedust, S., Akbariqomi, M., & Tebyaniyan, H. (2022). Lipid-based nanoparticles for the targeted delivery of anticancer drugs: A review. Current Drug Delivery, 19(10), 1012-1033.https://doi.org/10.2174/1567201819666220117102658

Martins, R. M., Siqueira, S., Machado, M. O., & Freitas, L. A. P. (2013). The effect of homogenization method on the properties of carbamazepine microparticles prepared by spray congealing. Journal of microencapsulation, 30(7), 692-700. https://doi.org/10.3109/02652048.2013.778906

Meruva, S., Singaraju, A. B., Vinjamuri, B. P., Ternik, R., & Stagner, W. C. (2024). Current State of Minitablet Product Design: A Review. Journal of Pharmaceutical Sciences.https://doi.org/10.1016/j.xphs.2024.02.016

Muliadi, A., & Sojka, P. E. (2010). A review of pharmaceutical tablet spray coating. Atomization and Sprays, 20(7). http://dx.doi.org/10.1615/AtomizSpr.v20.i7.40

Mute, D. V., & Shelar, T. M. (2024). Tablets manufacturing defects and remedies. Journal of Drug Delivery & Therapeutics, 14(10), 182-195.https://doi.org/10.36948/ijfmr.2023.v05i05.8032

Pal, R., Pandey, P., Anand, A., Saxena, A., Thakur, S. K., Malakar, R. K., & Kumar, V. (2023). The Pharmaceutical Polymer’s; A current status in drug delivery: A Comprehensive Review. Journal of Survey in Fisheries Sciences, 3682-3692.https://doi.org/10.53555/sfs.v10i1.1648

Pandey, P., Pal, R., Rizwan, M., Saxena, A., Koli, M., Nogai, L., & Kumar, N. (2023). The recent approaches in nano-technology with applications of 3-D printing (3DP) in diverse advanced drug delivery system (DDS). Euro. Chem. Bull, 12, 4444-4458.https://doi.org/10.48047/ecb/2023.12.si10.00510

Passerini, N., Qi, S., Albertini, B., Grassi, M., Rodriguez, L., & Craig, D. Q. (2010). Solid lipid microparticles produced by spray congealing: influence of the atomizer on microparticle characteristics and mathematical modeling of the drug release. Journal of pharmaceutical sciences, 99(2), 916-931.https://doi.org/10.1002/jps.21854

Reddy, B. V., Navaneetha, K., & Reddy, B. R. (2013). Tablet coating industry point view-a comprehensive review. Int. J. Pharm. Biol. Sci, 3(1), 248-261.

Sah, A. K., Jangdey, M. S., & Daharwal, S. J. (2014). Tablet coating technology: An overview. Asian Journal of Pharmacy and Technology, 4(2), 83-97.

Seo, K. S., Bajracharya, R., Lee, S. H., & Han, H. K. (2020). Pharmaceutical application of tablet film coating. Pharmaceutics, 12(9), 853.https://doi.org/10.3390/pharmaceutics12090853

Subramanian, P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021, 26, 5510. https://doi.org/10.3390/molecules26185510

Toschkoff, G., Just, S., Knop, K., Kleinebudde, P., Funke, A., Djuric, D., ... & Khinast, J. G. (2015). Modeling of an active tablet coating process. Journal of pharmaceutical sciences, 104(12), 4082-4092.https://doi.org/10.1002/jps.24621

Tran, B. N., Tran, K. L., Nguyen, T. T., Bui, L. P. T., & Nguyen, C. N. (2023). A Novel Alginate Film based on Nanocoating Approach for enteric-release tablets. AAPS PharmSciTech, 24(4), 99.https://doi.org/10.1208/s12249-023-02557-0

Vahora, N., Rana, Y. & Patel, M. 3D Printed Novel Child-Resistant Packaging. J Package Technol Res 7, 147–157 (2023).https://doi.org/10.1007/s41783-023-00158-7

Yusuf, A.; Almotairy, A.R.Z.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. https://doi.org/10.3390/polym15071596

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric



1
Save
0
Citation
109
View
1
Share