References
Alzubaidi, L., Al-Shamma, O., Fadhel, M. A., Farhan, L., & Zhang, J. (2020). Classification of red blood cells in sickle cell anemia using deep convolutional neural network. In Intelligent Systems Design and Applications: 18th International Conference on Intelligent Systems Design and Applications (ISDA 2018) held in Vellore, India, December 6-8, 2018, Volume 1 (pp. 550-559). Springer International Publishing. https://doi.org/10.1007/978-3-030-16657-1_51
Alzubaidi, L., Fadhel, M. A., Al-Shamma, O., Zhang, J., & Duan, Y. (2020). Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics, 9(3), 427. https://doi.org/10.1515/bmt-2021-0127
Bushra, S. N., & Shobana, G. (2021, March). Paediatric sickle cell detection using deep learning-a review. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 177-183). IEEE. https://doi.org/10.1109/ICCCNT51525.2021.9580165
Chen, C. X., Funkenbusch, G. T., & Wax, A. (2023). Biophysical profiling of sickle cell disease using holographic cytometry and deep learning. International Journal of Molecular Sciences, 24(15), 11885. https://doi.org/10.3390/ijms241511885
Dada, E. G., Oyewola, D. O., & Joseph, S. B. (2022). Deep convolutional neural network model for detection of sickle cell anemia in peripheral blood images. Communication in Physical Sciences, 8(1). https://doi.org/10.1109/ICCCNT51525.2021.9580165
Das, P. K., Dash, A., & Meher, S. (2024). ACDSSNet: Atrous convolution-based deep semantic segmentation network for efficient detection of sickle cell anemia. IEEE Journal of Biomedical and Health Informatics. https://doi.org/10.1109/JBHI.2024.3362843
Deo, A., Pandey, I., Khan, S. S., Mandlik, A., Doohan, N. V., & Panchal, B. (2024). Deep learning-based red blood cell classification for sickle cell anemia diagnosis using hybrid CNN-LSTM model. Traitement du Signal, 41(3). https://doi.org/10.1007/978-3-030-16657-1_51
Fu, H., Tian, Y., Zha, G., Xiao, X., Zhu, H., Zhang, Q., ... & Cao, C. (2024). Microstrip isoelectric focusing with deep learning for simultaneous screening of diabetes, anemia, and thalassemia. Analytica Chimica Acta, 1312, 342696. https://doi.org/10.1016/j.aca.2019.03.014
Gaikwad, D., Mahale, V., & Gaikwad, A. (2024, February). A review on blood disease detection using artificial intelligence techniques. In 2024 IEEE International Conference on Big Data & Machine Learning (ICBDML) (pp. 21-26). IEEE. https://doi.org/10.14569/IJACSA.2019.0100712
Ganesan, K., & K, B. B. (2023). A novel deep learning approach for sickle cell anemia detection in human RBCs using an improved wrapper-based feature selection technique in microscopic blood smear images. Biomedical Engineering/Biomedizinische Technik, 68(2), 175-185.
Goswami, N. G., Goswami, A., Sampathila, N., Bairy, M. G., Chadaga, K., & Belurkar, S. (2024). Detection of sickle cell disease using deep neural networks and explainable artificial intelligence. Journal of Intelligent Systems, 33(1), 20230179. https://doi.org/10.3390/info15070403
Goswami, N. G., Sampathila, N., Bairy, G. M., Goswami, A., Brp Siddarama, D. D., & Belurkar, S. (2024). Explainable artificial intelligence and deep learning methods for the detection of sickle cell by capturing the digital images of blood smears. Information, 15(7), 403. https://doi.org/10.3390/info15070403
Jennifer, S. S., Shamim, M. H., Reza, A. W., & Siddique, N. (2023). Sickle cell disease classification using deep learning. Heliyon, 9(11). https://doi.org/10.1016/j.heliyon.2023.e22203
Koua, K. A. J., Diop, C. T., Diop, L., & Diop, M. (2024). Enhanced neonatal screening for sickle cell disease: Human-guided deep learning with CNN on isoelectric focusing images. Journal of Infrastructure, Policy and Development, 8(9), 6121. https://doi.org/10.24294/jipd.v8i9.6121
Lamoureux, E. S., Cheng, Y., Islamzada, E., Matthews, K., Duffy, S. P., & Ma, H. (2024). Biophysical profiling of red blood cells from thin-film blood smears using deep learning. Heliyon, 10(15). https://doi.org/10.1101/2024.04.10.588926
Manescu, P., Bendkowski, C., Claveau, R., Elmi, M., Brown, B. J., Pawar, V., ... & Fernandez-Reyes, D. (2020). A weakly supervised deep learning approach for detecting malaria and sickle cells in blood films. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23 (pp. 226-235). Springer International Publishing. https://doi.org/10.1007/978-3-030-59722-1_22
Moysis, E., Brown, B. J., Shokunbi, W., Manescu, P., & Fernandez-Reyes, D. (2024). Leveraging deep learning for detecting red blood cell morphological changes in blood films from children with severe malaria anaemia. British Journal of Haematology. https://doi.org/10.1111/bjh.19599
Nardo-Marino, A., Braunstein, T. H., Petersen, J., Brewin, J. N., Mottelson, M. N., Williams, T. N., ... & Glenthøj, A. (2022). Automating pitted red blood cell counts using deep neural network analysis: A new method for measuring splenic function in sickle cell anaemia. Frontiers in Physiology, 13, 859906. https://doi.org/10.3389/fphys.2022.85990
Parmar, U. P. S., Surico, P. L., Singh, R. B., Romano, F., Salati, C., Spadea, L., ... & Zeppieri, M. (2024). Artificial intelligence (AI) for early diagnosis of retinal diseases. Medicina, 60(4), 527. https://doi.org/10.3390/medicina60040527
Sani, A., Tian, Y., Shah, S., Khan, M. I., Abdurrahman, H. R., Zha, G., ... & Cao, C. (2024). Deep learning ResNet34 model-assisted diagnosis of sickle cell disease via microcolumn isoelectric focusing. Analytical Methods. https://doi.org/10.1039/d4ay01005a
Sen, B., Ganesh, A., Bhan, A., & Dixit, S. (2021, April). Deep learning-based diagnosis of sickle cell anemia in human RBC. In 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM) (pp. 526-529). IEEE. https://doi.org/10.1515/bmt-2021-0127
Simon, K., Vicent, M., Addah, K., Bamutura, D., Atwiine, B., Nanjebe, D., & Mukama, A. O. (2023, April). Comparison of deep learning techniques in detection of sickle cell disease. Artificial Intelligence and Applications, 1(4), 252-259. https://doi.org/10.47852/bonviewAIA3202853
Tengshe, R., Aishwarya, U. N., Raj, A., Akshaya, K., Pattanshetty, A. A., & Fatimah, B. (2021, July). Sickle cell anemia detection using convolutional neural network. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCCNT51525.2021.9580165
Yuan, Z., Puyol-Antón, E., Jogeesvaran, H., Reid, C., Inusa, B., & King, A. P. (2020). Deep learning for automatic spleen length measurement in sickle cell disease patients. In Medical Ultrasound, and Preterm, Perinatal and Paediatric Image Analysis: First International Workshop, ASMUS 2020, and 5th International Workshop, PIPPI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4-8, 2020, Proceedings 1 (pp. 33-41). Springer International Publishing. https://doi.org/10.1007/978-3-030-60334-2_4
Zhang, M., Li, X., Xu, M., & Li, Q. (2020). Automated semantic segmentation of red blood cells for sickle cell disease. IEEE Journal of Biomedical and Health Informatics, 24(11), 3095-3102. https://doi.org/10.1109/JBHI.2020.3000484