References
Arfiani, A., & Rustam, Z. (2019, November). Ovarian cancer data classification using bagging and random forest. In AIP Conference Proceedings (Vol. 2168, No. 1). AIP Publishing.
Bae, J. H., Kim, M., Lim, J. S., & Geem, Z. W. (2021). Feature selection for colon cancer detection using k-means clustering and modified harmony search algorithm. Mathematics, 9(5), 570.
Chatterjee, P., Siddiqui, S., Granata, G., Dey, P., & Abdul Kareem, R. S. (2024). Performance analysis of five U-Nets on cervical cancer datasets. Indian Journal of Information Sources and Services, 14(1), 17–28.
Chen, S., Chen, Y., Yu, L., & Hu, X. (2021). Overexpression of SOCS4 inhibits proliferation and migration of cervical cancer cells by regulating JAK1/STAT3 signaling pathway. European Journal of Gynaecological Oncology, 42(3), 554-560.
Consiglio, A., Casalino, G., Castellano, G., Grillo, G., Perlino, E., Vessio, G., & Licciulli, F. (2021). Explaining ovarian cancer gene expression profiles with fuzzy rules and genetic algorithms. Electronics, 10(4), 375.
Cree, I. A., White, V. A., Indave, B. I., & Lokuhetty, D. (2020). Revising the WHO classification: female genital tract tumours. Histopathology, 76(1), 151-156.
Elhoseny, M., Bian, G. B., Lakshmanaprabu, S. K., Shankar, K., Singh, A. K., & Wu, W. (2019). Effective features to classify ovarian cancer data in internet of medical things. Computer Networks, 159, 147-156.
Engqvist, H., Parris, T. Z., Biermann, J., Rönnerman, E. W., Larsson, P., Sundfeldt, K., & Helou, K. (2020). Integrative genomics approach identifies molecular features associated with early-stage ovarian carcinoma histotypes. Scientific Reports, 10(1), 7946.
Escorcia-Gutierrez, J., Torrents-Barrena, J., Gamarra, M., Madera, N., Romero-Aroca, P., Valls, A., & Puig, D. (2022). A feature selection strategy to optimize retinal vasculature segmentation. Computers, Materials and Continua, 70(2), 1-15.
Ganguly, S. (2020). Multi-objective distributed generation penetration planning with load model using particle swarm optimization. Decision Making: Applications in Management and Engineering, 3(1), 30-42.
Hinchcliff, E., Westin, S. N., & Herzog, T. J. (2022). State of the science: Contemporary front-line treatment of advanced ovarian cancer. Gynecologic Oncology, 166(1), 18-24.
Paik, E. S., Lee, J. W., Park, J. Y., Kim, J. H., Kim, M., Kim, T. J., ... & Seo, S. W. (2019). Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods. Journal of Gynecologic Oncology, 30(4).
Prat, J., D'Angelo, E., & Espinosa, I. (2018). Ovarian carcinomas: at least five different diseases with distinct histological features and molecular genetics. Human Pathology, 80, 11-27.
Ramakrishnan, J., Ravi Sankar, G., & Thavamani, K. (2019). Publication growth and research in India on lung cancer literature: A bibliometric study. Indian Journal of Information Sources and Services, 9(S1), 44-47.
Ramana, R. H. V., & Ravisankar, V. (2024). Precision in prostate cancer diagnosis: A comprehensive study on neural networks. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 15(2), 109-122. https://doi.org/10.58346/JOWUA.2024.I2.008
Shahane, S. (2024). Predict ovarian cancer [Dataset]. Kaggle. https://www.kaggle.com/saurabhshahane/predict-ovarian-cancer
Su, Y. N., Wang, M. J., Yang, J. P., Wu, X. L., Xia, M., Bao, M. H., & Fu, L. J. (2023). Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome. Frontiers in Endocrinology, 14, 1122709.
Takahashi, A., Hong, L., & Chefetz, I. (2020). How to win the ovarian cancer stem cell battle: Destroying the roots. Cancer Drug Resistance, 3(4), 1021.
Yang, J. P., Ullah, A., Su, Y. N., Otoo, A., Adu-Gyamfi, E. A., Feng, Q., & Ding, Y. B. (2023). Glycyrrhizin ameliorates impaired glucose metabolism and ovarian dysfunction in a polycystic ovary syndrome mouse model. Biology of Reproduction, 109(1), 83-96.