References
Abbas, Q., Celebi, M. E., & García, I. F. (2011). Hair removal methods: A comparative study for dermoscopy images. Biomedical Signal Processing and Control, 6(4), 395-404..
Argenziano, G., Longo, C., Cameron, A., Cavicchini, S., Gourhant, J. Y., Lallas, A., ... & Zalaudek, I. (2011). Blue-black rule: a simple dermoscopic clue to recognize pigmented nodular melanoma. British Journal of Dermatology, 165(6), 1251-1255.
Ballabio, D., Todeschini, R., & Consonni, V. (2019). Recent advances in high-level fusion methods to classify multiple analytical chemical data. Data handling in science and technology, 31, 129-155.
Daghrir, J., Tlig, L., Bouchouicha, M., & Sayadi, M. (2020, September). Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach. In 2020 5th international conference on advanced technologies for signal and image processing (ATSIP) (pp. 1-5). IEEE.
Dalila, F., Zohra, A., Reda, K., & Hocine, C. (2017). Segmentation and classification of melanoma and benign skin lesions. Optik, 140, 749-761.
Gautam, D., & Ahmed, M. (2015, December). Melanoma detection and classification using SVM based decision support system. In 2015 annual IEEE India conference (INDICON) (pp. 1-6). IEEE.
Jadhav, A. R., Ghontale, A. G., & Shrivastava, V. K. (2019). Segmentation and border detection of melanoma lesions using convolutional neural network and SVM. In Computational Intelligence: Theories, Applications and Future Directions-Volume I: ICCI-2017 (pp. 97-108). Springer Singapore.
Kavitha, J. C., Suruliandi, A., Nagarajan, D., & Nadu, T. (2017). Melanoma detection in dermoscopic images using global and local feature extraction. International Journal of Multimedia and Ubiquitous Engineering, 12(5), 19-28.