References
Adiyoga, R., Arief, I. I., Budiman, C., & Abidin, Z. (2022). In vitro anticancer potentials of Lactobacillus plantarum IIA-1A5 and Lactobacillus acidophilus IIA-2B4 extracts against WiDr human colon cancer cell line. Food Science and Technology, 42, e87221. https://doi.org/10.1590/fst.87221
Al-deeb, I., Joseph, J., Majid, A. M. S. A., & Samad N. A. (2021). Phytochemicals with Direct and/or Indirect Anti-angiogenic Properties Against Various Cancer Types Focusing on Their Mechanism of Action. Journal of Angiotherapy, 5(1), 226-233. https://doi.org/10.25163/angiotherapy.51212406111121
Al-Ostoot, F. H., Salah, S., Khamees, H. A., & Khanum, S. A. (2021). Tumor angiogenesis: Current challenges and therapeutic opportunities. Cancer Treatment and Research Communications, 28, 100422. Doi: https://doi.org/10.1016/j.ctarc.2021.100422
Al-Rawi, S. S., Ibrahim, A. H., Hamde, M. A., Babu, D., Nazari, M., Ab Kadir, M. O., Majid, A. S. A., & Shah, A. M. (2023). Antiangiogenic and Anticancer Potential of Supercritical Fluid Extracts from Nutmeg Seeds; In vitro, Ex vivo and In silico studies. Journal of Angiotherapy, 7(1), 1-13. https://doi.org/10.25163/angiotherapy.719371
Al-Suede, F. S. R., Ahamed, M. B. K., Majid, A. S. A., Saghir, S. A. M., Oon, C. E., & Majid, A. M. S. A. (2021). Immunomodulatory and Antiangiogenic Mechanisms of Polymolecular Botanical Drug Extract C5OSEW5050ESA OS Derived from Orthosiphon stamineus. Journal of Angiotherapy, 5(1), 194-206. https://doi.org/10.25163/angiotherapy.51211411913130321
Alipour, M. (2020). Molecular mechanism of Helicobacter pylori- Induced gastric Cancer. Journal of Gastrointestinal Cancer, 52(1), 23–30. https://doi.org/10.1007/s12029-020-00518-5
Almanaa, T. N., Yassin, M. A., El-Mekkawy, R. M., Ahmed, N. S., & Rabie, G. H. (2020). Anticancer and Antioxidant Activity by Secondary Metabolites of Aspergillus fumigatus Advances in Animal and Veterinary Sciences, 9(2), 265-273. https://doi.org/10.17582/journal.aavs/2021/9.2.265.273
Amin, T., Karim, A. B., Oyshe, I. I., Hossain, A., Karim, T., Jime, J. S., ….& Fakruddin, M. (2023). Unlocking Nature’s Treasure Trove: Exploring Microorganisms for Novel Bioactives, Journal of Angiotherapy, 7(1), 1-8. Doi: https://doi.org/10.25163/angiotherapy.719345
Ansari, M. J., Bokov, D., Markov, A., Jalil, A. T., Shalaby, M. N., Suksatan, W., …. & Dadashpour, M. (2022). Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Communication and Signaling, 20(1), 49. https://doi.org/10.1186/s12964-022-00838-y
Anwar, M. M., Albanese, C., Hamdy, N. M., & Sultan, A. S. (2022). Rise of the natural red pigment ‘prodigiosin’ as an immunomodulator in cancer. Cancer Cell International, 22(1), 419. https://doi.org/10.1186/s12935-022-02815-4
Bajuri, U. K. M., Ramasamy, K., & Lim, S. M. (2022). Cytotoxic and Anti-angiogenic Effects of Postbiotics Derived from Pediococcus spp. against CT26 Mouse Colon Carcinoma Cells. Journal of Angiotherapy, 6(3), 723. https://doi.org/10.25163/angiotherapy.6341C
Belkaid, Y., & Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011
Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410. https://doi.org/10.1038/nrc1093
Bhatt, A. P., Redinbo, M. R., & Bultman, S. J. (2017). The role of the microbiome in cancer development and therapy. CA Cancer Journal for Clinicians, 67(4), 326-344. doi: 10.3322/caac.21398
Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257. https://doi.org/10.1038/35025220
Carmeliet, P., & Jain, R. K. (2011a). Molecular mechanisms and clinical applications of angiogenesis. Nature, 473(7347), 298–307. https://doi.org/10.1038/nature10144
Carmeliet, P., & Jain, R. K. (2011b). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nature Reviews Drug Discovery, 10(6), 417–427. https://doi.org/10.1038/nrd3455
Cerimele, F., Brown, L. F., Bravo, F., Ihler, G. M., Kouadio, P., & Arbiser, J. L. (2003). Infectious Angiogenesis: Bartonella bacilliformis Infection Results in Endothelial Production of Angiopoetin-2 and Epidermal Production of Vascular Endothelial Growth Factor. American Journal of Pathology, 163(4), 1321-1327. https://doi.org/10.1016/S0002-9440(10)63491-8
Chang, E. L., Ting, C. Y., Hsu, P.H., Lin, Y. C., Liao, E. C., Huang, C. Y., …. & Yeh, C. K. (2017). Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors. The Journal of Controlled Release, 255, 164-175. doi: 10.1016/j.jconrel.2017.04.010
Chu, Y. C., Chang, C., Liao, H. R., Fu, S. L., & Chen, J. J. (2021). Anti-Cancer and Anti-Inflammatory Activities of Three New Chromone Derivatives from the Marine-Derived Penicillium citrinum. Marine Drugs, 19(8), 408. https://doi.org/10.3390/md19080408
Dabrowska, K., & Witkiewicz, W. (2016). Correlations of Host Genetics and Gut Microbiome Composition. Frontiers in Microbiology, 7, 1357. DOI:10.3389/fmicb.2016.01357
de Menezes, A-A. P. M., Aguiar, R. P. S., Santos, J. V. O., Sarkar, C., Islam, M. T., Braga, A. L., …. & Sousa, J. M. C. (2023). Citrinin as a potential anti-cancer therapy: A comprehensive review. Chemico-Biological Interactions, 381, 110561. Doi: https://doi.org/10.1016/j.cbi.2023.110561
DeBritto, S., Gajbar, T. D., Satapute, P., Sundaram, L., Lakshmikantha, R. Y., Jogaiah, S., & Ito, S-I. (2020). Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Scientific Reports, 10(1), 1542. https://doi.org/10.1038/s41598-020-58335-6
Dehghani, N., Tafvizi, F., & Jafari, P. (2020). Cell cycle arrest and anti-cancer potential of probiotic Lactobacillus rhamnosus against HT-29 cancer cells. Bioimpacts, 11(4), 245–252. https://doi.org/10.34172/bi.2021.32
Faghfoori, Z., Faghfoori, M. H., Saber, A., Izadi, A., & Khosroushahi, A. Y. (2021). Anticancer effects of bifidobacteria on colon cancer cell lines. Cancer Cell International, 21(1), 258. https://doi.org/10.1186/s12935-021-01971-3
Fakruddin, M., Shishir, M. A., Oyshe, I. I., Amin, S. M. T., Hossain, A., Sarna, I. I., Jerin, N., & Mitra, D. K. (2023). Microbial Architects of Malignancy: Exploring the Gut Microbiome’s Influence in Cancer Initiation and Progression. Cancer Plus, 5(1), 1. https://doi.org/10.18063/cp.397
Fakruddin, M., Shishir, M. A., Mouree, K. R., & Khan, S. S. (2022). Environmental and physiological angiogenesis in causing CVD with oxidative pattern. Journal of Angiotherapy, 6(2), 663-667. https://doi.org/10.25163/angiotherapy.622129
Fakruddin, M., Shishir, M. A., Yousuf, Z., & Khan, S. S. (2022). Next Generation Probiotics- The Future of Biotherapeutics. Microbial Bioactives, 5(1), 156-163. DOI: https://doi.org/10.25163/microbbioacts.514309
Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Nature Reviews Cancer, 2(10), 795–803. https://doi.org/10.1038/nrc909
Ferrara, N., & Adamis, A. P. (2016). Ten years of anti-vascular endothelial growth factor therapy. Nature Reviews Drug Discovery, 15(6), 385–403. https://doi.org/10.1038/nrd.2015.17
Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine, 1(1), 27–30. https://doi.org/10.1038/nm0195-27
Francescone, R., Hou, V., & Grivennikov, S. I. (2014). Microbiome, inflammation, and cancer. Cancer Journal, 20(3), 181-189. doi: 10.1097/PPO.0000000000000048
Franks, I. (2013). Gut microbes might promote intestinal angiogenesis. Nature Reviews Gastroenterology & Hepatology, 10, 3. https://doi.org/10.1038/nrgastro.2012.227
Gopalakrishnan, V., Weiner, B., Ford, C. B., Sellman, B. R., Hammond, S. A., Freeman, D. J., …. & Henn, M. R. (2020). Intervention strategies for microbial therapeutics in cancer immunotherapy. Immuno-Oncology Technology, 6, 9-17. Doi: https://doi.org/10.1016/j.iotech.2020.05.001
Gouda, S., Das, G., Sen, S. K., Shin, H., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538. https://doi.org/10.3389/fmicb.2016.01538
Guruceaga, X., Perez-Cuesta, U., Pellon, A., Cendon-Sanchez, S., Pelegri-Martinez, E., Gonzalez, O., …. & Rementeria, A. (2021). Aspergillus fumigatus Fumagillin Contributes to Host Cell Damage. Journal of Fungi, 7(11), 936. doi: 10.3390/jof7110936
Han, J. M., Jang, J. P., Jang, J. H., Ahn, J. S., & Jung, H. J. (2020). Antiangiogenic potentials of ahpatinins obtained from a Streptomyces species. Oncology Reports, 43(2), 625-634. doi: 10.3892/or.2019.7446
Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of Cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
Hashemi-Khah, M., Soleimani, N. A., Forghanifard, M. M., Gholami, O., Taheri, S., & Amoueian, S. (2022). An In Vivo Study of Lactobacillus rhamnosus (PTCC 1637) as a New Therapeutic Candidate in Esophageal Cancer. BioMed Research International, 2022, 1–9. https://doi.org/10.1155/2022/7607470
Hassan, M., Elmezain, W. A., Baraka, D., Abo-Elmaaty, S. A., Elhassanein, A., Ibrahim, R. M., & Hamed, A. A. (2024). Anti-Cancer and Anti-Oxidant Bioactive Metabolites from Aspergillus fumigatus WA7S6 Isolated from Marine Sources: In Vitro and In Silico Studies. Microorganisms, 12(1), 127. https://doi.org/10.3390/microorganisms12010127
Ho, T. F., Peng, Y., Chuang, S., Lin, S. C., Feng, B., Lu, C., …. & Chang, C. (2009). Prodigiosin down-regulates survivin to facilitate paclitaxel sensitization in human breast carcinoma cell lines. Toxicology and Applied Pharmacology, 235(2), 253–260. https://doi.org/10.1016/j.taap.2008.12.009
Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490
Jain, R. K. (2014). Anti-angiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell, 26(5), 605-622. doi:10.1016/j.ccell.2014.10.006
Jain, R. K., Duda, D. G., Willett, C. G., Sahani, D. V., Zhu, A. X., Loeffler, J. S., Batchelor, T. T., & Sorensen, A. G. (2009). Biomarkers of response and resistance to antiangiogenic therapy. Nature Reviews Clinical Oncology, 6(6), 327–338. https://doi.org/10.1038/nrclinonc.2009.63
Jang, J., Han, J. M., Jung, H. J., Osada, H., Jang, J., & Ahn, J. S. (2018). Anti-Angiogenesis Effects Induced by Octaminomycins A and B against HUVECs. Journal of Microbiology and Biotechnology, 28(8), 1332-1338. https://doi.org/10.4014/jmb.1806.06046
Jang, J., Jang, M., Nogawa, T., Takahashi, S., Osada, H., Ahn, J. S., Ko, S., & Jang, J. (2022). RK-270D and E, Oxindole Derivatives from Streptomyces sp. with Anti-Angiogenic Activity. Journal of Microbiology and Biotechnology, 32, 302-306. https://doi.org/10.4014/jmb.2110.10039
Kerbel, R.S. (2008). Tumor angiogenesis. New England Journal of Medicine, 358(19), 2039-2049. doi: 10.1056/NEJMra0706596
Kerbel, R. S. (2011). Improving conventional or targeted anticancer therapy with complementary, not alternative, antiangiogenic treatment strategies. Journal of Clinical Oncology, 29(10), 1239-1242. doi: 10.1200/JCO.2010.32.9504
Konishi, H., Fujiya, M., Tanaka, H., Ueno, N., Moriichi, K., Sasajima, J., …. & Kohgo, Y. (2016). Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis. Nature Communications, 7(1), 12365. https://doi.org/10.1038/ncomms12365
Lei, Z. N., Teng, Q. X., Tian, Q., Chen, W., Xie, Y., Wu, K., …. & He, Y. (2022). Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduction and Targeted Therapy, 7, 358. https://doi.org/10.1038/s41392-022-01190-w
Liberto, M. C., Matera, G., Lamberti, A. G., Barreca, G. S., Quirino, A., & Focà, A. (2003). In vitro Bartonella quintana infection modulates the programmed cell death and inflammatory reaction of endothelial cells. Diagnostic Microbiology and Infectious Disease, 45(2), 107–115. https://doi.org/10.1016/s0732-8893(02)00461-3
Liu, Z-L., Chen, H-H., Zheng, L-L., Sun, L-P., Shi, L. (2023). Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduction and Targeted Therapy, 8, 198. https://doi.org/10.1038/s41392-023-01460-1
Lok, B. (2017). Angiogenesis and its potential role in the growth and proliferation of pathogens. Journal of Angiotherapy, 1(1), E001-E011. https://doi.org/10.25163/angiotherapy.11000121421300417
--
Malespín-Bendaña, W., Ferreira, R. M., Pinto, M., Figueiredo, C., Alpízar-Alpízar, W., Une, C., Figueroa-Protti, L., & RamíRez, V. (2023). Helicobacter pylori infection induces abnormal expression of pro-angiogenic gene ANGPT2 and miR-203a in AGS gastric cell line. Brazilian Journal of Microbiology, 54(2), 791–801. https://doi.org/10.1007/s42770-023-00940-4
Marmé, D. (2018). Tumor Angiogenesis: A Key Target for Cancer Therapy. Oncology Research and Treatment, 41 (4), 164. https://doi.org/10.1159/000488340
Mudaliar, S. B., & Prasad, A. S. B. (2024). A biomedical perspective of pyocyanin from Pseudomonas aeruginosa: its applications and challenges. World Journal of Microbiology & Biotechnology, 40(3), 90. https://doi.org/10.1007/s11274-024-03889-0
Mueller, A., Brockmueller, A., Fahimi, N., Ghotbi, T., Hashemi, S., Sadri, S., …. & Shakibaei, M. (2022). Bacteria-Mediated Modulatory Strategies for Colorectal Cancer treatment. Biomedicines, 10(4), 832. https://doi.org/10.3390/biomedicines10040832
Nafsi, N. N., Rahman, M. A., Shishir, M. A., Arefin, M. S., Jime, J. S., Bulbul, N., Safa, A., & Fakruddin, M. (2024). Unleashing the Potential of Gut Microbiota: Cholesterol Reduction Through Microbial Bile Acid Metabolism. Current Biotechnology, 13(1), 6-14. Doi: 10.2174/0122115501282536240301055402
Naidu, J. R., Sreenivasan, S., Ruhi, S., Chen, H. W. J., Naidu, S. R., Khan, D., Aung, T. T., Thwin, M. M., Al-Goshae, H. A., & Rammohan, S. (2023). Review on Angiogenesis Modulation by Natural Compounds as Therapeutic Potential and Mechanisms. Journal of Angiotherapy, 8(2), 1-6. https://doi.org/10.25163/angiotherapy.829507
Osherov, N., & Ben-Ami, R. (2016). Modulation of Host Angiogenesis as a Microbial Survival Strategy and Therapeutic Target. PLoS Pathogens, 12(4), e1005479. doi: 10.1371/journal.ppat.1005479
Potente, M., Gerhardt, H., & Carmeliet, P. (2011). Basic and therapeutic aspects of angiogenesis. Cell, 146(6), 873–887. https://doi.org/10.1016/j.cell.2011.08.039
Procaccianti, G., Roggiani, S., Conti, G., Brigidi, P., Turroni, S., & D'Amico, F. (2023). Bifidobacterium in anticancer immunochemotherapy: friend or foe? Microbiome Research Reports, 2(3), 24. doi: 10.20517/mrr.2023.23
Rajoka, M. S. R., Zhao, H., Mehwish, H. M., Li, N., Lü, Y., Lian, Z., …. & Shi, J. (2019). Anti-tumor potential of cell free culture supernatant of Lactobacillus rhamnosus strains isolated from human breast milk. Food Research International, 123, 286–297. https://doi.org/10.1016/j.foodres.2019.05.002
Rooks, M., & Garrett, W. S. (2016). Gut microbiota, metabolites and host immunity. Nature Reviews Immunology, 16(6), 341–352. https://doi.org/10.1038/nri.2016.42
Sajib, S., Zahra, F. T., Lionakis, M. S., German, N., & Mikelis, C. M. (2017). Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis, 21(1), 1–14. https://doi.org/10.1007/s10456-017-9583-4
Sankarapandian, V., Maran, B. A. V., Rajendran, R. L., Jogalekar, M. P., Sridharan, G., Krishnamoorthy, R., Gangadaran, P., & Ahn, B. (2022). An update on the effectiveness of probiotics in the prevention and treatment of cancer. Life, 12(1), 59. https://doi.org/10.3390/life12010059
Sater, A. H. A., Bouferraa, Y., Amhaz, G., Haibe, Y., Lakkiss, A. E., & Shamseddine, A. (2022). From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Frontiers in Oncology, 12, 804983. doi:10.3389/fonc.2022.804983
Sawant, S. S., Patil, S. M., Gupta, V., & Kunda, N. K. (2020). Microbes as Medicines: Harnessing the power of bacteria in advancing Cancer treatment. International Journal of Molecular Sciences, 21(20), 7575. https://doi.org/10.3390/ijms21207575
Schirbel, A., Kessler, S., Rieder, F., West, G., Rebert, N., Asosingh, K., McDonald, C., & Fiocchi, C. (2013). Pro-Angiogenic Activity of TLRs and NLRs: A Novel Link Between Gut Microbiota and Intestinal Angiogenesis. Gastroenterology, 144(3), 613-623.e9. Doi: https://doi.org/10.1053/j.gastro.2012.11.005
Schwabe, R. F., & Jobin, C. (2013). The microbiome and cancer. Nature Reviews Cancer. 13(11), 800-812. doi:10.1038/nrc3610
Sethi, Y., Vora, V., Anyagwa, O. E., Turabi, N., Abdelwahab, M., Kaiwan, O., …. & Padda, I. (2024). Streptomyces Paradigm in Anticancer therapy: A State-of-the Art review. Current Cancer Therapy Reviews, 20(4), 386-401. Doi: 10.2174/0115733947254550230920170230
Sevcikova, A., Mladosievicova, B., Mego, M., & Ciernikova, S. (2023). Exploring the role of the gut and intratumoral microbiomes in tumor progression and metastasis. International Journal of Molecular Sciences, 24(24), 17199.
Sherwood, L. M., Parris, E. E., & Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. The New England Journal of Medicine, 285(21), 1182–1186. https://doi.org/10.1056/nejm197111182852108
Shishir, M. A., Sultana, S., Turna, J. T., Akter, T., Mim, S. J., Islam, R., & Fakruddin, M. (2023). Non-Ribosomally Synthesized Lipopeptides (NRLP): Novel Potential Therapeutics for Cancer Treatment. Cancer Plus, 5(2), 2569. https://doi.org/10.36922/cp.2569
Somani, R. R., & Bhanushali, U. V. (2013). Targeting angiogenesis for treatment of human cancer. Indian Journal of Pharmaceutical Sciences, 75(1), 3-10. doi: 10.4103/0250-474X.113529
Tran, P. M., Tang, S., & Salgado-Pabón, W. (2022). Staphylococcus aureus β-Toxin Exerts Anti-angiogenic Effects by Inhibiting Re-endothelialization and Neovessel Formation. Frontiers in Microbiology, 13, 840236. https://doi.org/10.3389/fmicb.2022.840236
Tsukamoto, K., Kumadaki, K., Tatematsu, K., Suzuki, N., & Doi, Y. (2022). The of Bartonella bacilliformis BafA Promotes Endothelial Cell Angiogenesis via the VEGF Receptor Signaling Pathway. mSphere, 7(2), e0008122. doi: 10.1128/msphere.00081-22
Tsukamoto, K., Shinzawa, N., Kawai, A., Suzuki, M., Kidoya, H., Takakura, N., …. & Doi, Y. (2020). The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nature Communications, 11(1), 3571. https://doi.org/10.1038/s41467-020-17391-2
Uusi-Mäkelä, M., & Rämet, M. (2018). Hijacking host angiogenesis to drive mycobacterial growth. Cell Host & Microbe, 24(4), 465–466. https://doi.org/10.1016/j.chom.2018.09.016
Vadlapudi, V., Borah, N., Yellusani, K. R., Gade, S., Reddy, P. S. R., Rajamanikyam, M., …. & Amanchy, R. (2017). Aspergillus Secondary Metabolite Database, a resource to understand the Secondary metabolome of Aspergillus genus. Scientific Reports, 7(1), 7325. https://doi.org/10.1038/s41598-017-07436-w
Vieira, A. T., Teixeira, M. M., & Martins, F.S. (2013). The Role of Probiotics and Prebiotics in Inducing Gut Immunity. Frontiers in Immunology, 4, 445. doi: 10.3389/fimmu.2013.00445
Visconti, A., Roy, C. I. L., Rosa, F., Rossi, N., Martin, T., Mohney, R. P., …. & Falchi, M. (2019). Interplay between the human gut microbiome and host metabolism. Nature Communications, 10(1), 4505. https://doi.org/10.1038/s41467-019-12476-z
Wan, X., Song, M., Wang, A., Zhao, Y., Wei, Z., & Lu, Y. (2021). Microbiome Crosstalk in Immunotherapy and Anti-angiogenesis Therapy. Frontiers in Immunology, 12, 747914. doi: 10.3389/fimmu.2021.747914
Xue, C., Li, G., Gu, X., Su, Y., Zheng, Q., Yuan, X., Bao, Z., Lu, J., & Li, L. (2023). Health and Disease: Akkermansia muciniphila, the Shining Star of the Gut Flora. Research (Wash D C), 6, 0107. doi: 10.34133/research.0107
Yoda, K., Miyazawa, K., Hosoda, M., Hiramatsu, M., Yan, F., & He, F. (2013). Lactobacillus GG-fermented milk prevents DSS-induced colitis and regulates intestinal epithelial homeostasis through activation of epidermal growth factor receptor. European Journal of Nutrition, 53(1), 105–115. https://doi.org/10.1007/s00394-013-0506-x
Zhao, L-Y., Mei, J-X., Yu, G., Lei, L., Zhang, W-H, Liu, K., …. & Hu, J-K. (2023). Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduction and Targeted Therapy, 8, 201. https://doi.org/10.1038/s41392-023-01406-7
Zhu, L., Gu, Q., & Fang, L. (2019). Cholesterol-mediated regulation of angiogenesis: An emerging paradigm. Cardiology Plus, 4, 1-9. DOI:10.4103/cp.cp_5_19