References
Basnin, N., Nahar, N., Anika, F.A., Hossain, M.S. and Andersson, K., (2021). Deep learning approach to classify Parkinson’s disease from MRI samples. In International conference on brain informatics, pp. 536-547. https://doi.org/10.1007/978-3-030-86993-9_48.
Camacho, M., Wilms, M., Mouches, P., Almgren, H., Souza, R., Camicioli, R., Ismail, Z., Monchi, O. and Forkert, N.D., (2023). Explainable classification of Parkinson’s disease using deep learning trained on a large multi-center database of T1-weighted MRI datasets. NeuroImage: Clinical, 38, pp. 103405. https://doi.org/10.1016/j.nicl.2023.103405.
Kaplan, E., Altunisik, E., Firat, Y.E., Barua, P.D., Dogan, S., Baygin, M., Demir, F.B., Tuncer, T., Palmer, E., Tan, R.S. and Yu, P., (2022). Novel nested patch-based feature extraction model for automated Parkinson's Disease symptom classification using MRI images. Computer Methods and Programs in Biome`dicine, 224, pp. 107030. https://doi.org/10.1016/j.cmpb.2022.107030.
Loh, H.W., Hong, W., Ooi, C.P., Chakraborty, S., Barua, P.D., Deo, R.C., Soar, J., Palmer, E.E. and Acharya, U.R., (2021). Application of deep learning models for automated identification of Parkinson’s disease: A review. Sensors, 21(21), pp. 1-25. https://doi.org/10.3390/s21217034.
Madan, Y., Veetil, I.K., Sowmya, V., Gopalakrishnan, E.A. and Soman, K.P., (2021). Deep learning-based approach for parkinson’s disease detection using region of interest. In Intelligent Sustainable Systems: Proceedings of ICISS, pp. 1-13. https://doi.org/10.1007/978-981-16-2422-3_1.
Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mahmud, M. and Al Mamun, S., (2019). Detecting neurodegenerative disease from MRI: a brief review on a deep learning perspective. In Brain Informatics: 12th International Conference, BI, Proceedings 12, pp. 115-125. https://doi.org/10.1007/978-3-030-37078-7_12.
Noor, M.B.T., Zenia, N.Z., Kaiser, M.S., Mamun, S.A. and Mahmud, M., (2020). Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia. Brain informatics, 7, pp. 1-21. https://doi.org/10.1186/s40708-020-00112-2.
Pahuja, G. and Prasad, B., (2022). Deep learning architectures for Parkinson's disease detection by using multi-modal features. Computers in Biology and Medicine, 146, pp. 105610. https://doi.org/10.1016/j.compbiomed.2022.105610.
Pourzinal, D., Yang, J., Lawson, R.A., McMahon, K.L., Byrne, G.J. and Dissanayaka, N.N., (2022). Systematic review of data-driven cognitive subtypes in Parkinson disease. European journal of neurology, 29(11), pp. 3395-3417. https://doi.org/10.1111/ene.15481.
Rajanbabu, K., Veetil, I.K., Sowmya, V., Gopalakrishnan, E.A. and Soman, K.P., (2022). Ensemble of deep transfer learning models for parkinson's disease classification. In Soft Computing and Signal Processing: Proceedings of 3rd ICSCSP, 2, pp. 135-143. https://doi.org/10.1007/978-981-16-1249-7_14.
Sahu, L., Sharma, R., Sahu, I., Das, M., Sahu, B. and Kumar, R., (2022). Efficient detection of Parkinson's disease using deep learning techniques over medical data. Expert Systems, 39(3), p.e12787. https://doi.org/10.1111/exsy.12787.
Sailaja, B. and VenuGopal, T., (2023). Brain MRI Image Classification and Analysis Using Modified ResNet50V2 for Parkinson’s Disease Detection. SN Computer Science, 4(6), pp. 854. https://doi.org/10.1007/s42979-023-02313-y.
Shu, Z.Y., Cui, S.J., Wu, X., Xu, Y., Huang, P., Pang, P.P. and Zhang, M., (2021). Predicting the progression of Parkinson's disease using conventional MRI and machine learning: An application of radiomic biomarkers in whole-brain white matter. Magnetic resonance in medicine, 85(3), pp. 1611-1624. https://doi.org/10.1002/mrm.28522.
Sivaranjini, S. and Sujatha, C.M., 2020. Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimedia tools and applications, 79(21), pp. 15467-15479.https://doi.org/10.1007/s11042-019-7469-8.
Solana-Lavalle, G. and Rosas-Romero, R., (2021). Classification of PPMI MRI scans with voxel-based morphometry and machine learning to assist in the diagnosis of Parkinson’s disease. Computer Methods and Programs in Biomedicine, 198, pp. 105793. https://doi.org/10.1016/j.cmpb.2020.105793.
Vyas, T., Yadav, R., Solanki, C., Darji, R., Desai, S. and Tanwar, S., (2022). Deep learning-based scheme to diagnose Parkinson's disease. Expert Systems, 39(3), pp. e12739. https://doi.org/10.1111/exsy.12739.
Wang, Y., He, N., Zhang, C., Zhang, Y., Wang, C., Huang, P., Jin, Z., Li, Y., Cheng, Z., Liu, Y. and Wang, X., 2023. An automatic interpretable deep learning pipeline for accurate Parkinson's disease diagnosis using quantitative susceptibility mapping and T1-weighted images, 44(12), pp. 4426-4438. https://doi.org/10.1002/hbm.26399.
Wingate, J., Kollia, I., Bidaut, L. and Kollias, S., (2020). Unified deep learning approach for prediction of Parkinson's disease. IET Image Processing, 14(10), pp. 1980-1989. https://doi.org/10.1049/iet-ipr.2019.1526.
Zhao, H., Tsai, C.C., Zhou, M., Liu, Y., Chen, Y.L., Huang, F., Lin, Y.C. and Wang, J.J., (2022). Deep learning based diagnosis of Parkinson’s Disease using diffusion magnetic resonance imaging. Brain imaging and behavior, 16(4), pp. 1749-1760. https://doi.org/10.1007/s11682-022-00631-y.