Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
RESEARCH ARTICLE   (Open Access)

The Analysis of Hematological Parameters CBC, ABO, NLR, and APTT and Its Implications on Haemophilic Patients with Low Bone Mineral Density

Rasha Ibrahim Salman 1* , Khalid Mahdi Salih 1, Nidal Karim Al-Rahal 2

+ Author Affiliations

Journal of Angiotherapy 8 (2) 1-7 https://doi.org/10.25163/angiotherapy.829472

Submitted: 30 November 2023 Revised: 16 February 2024  Published: 17 February 2024 


Abstract

Background: Haemophilia is a rare X-linked recessive genetic disorder characterized by the absence or deficiency of factor VIII (haemophilia A) or factor IX (haemophilia B). The current study aimed to assess some hematological factors in hemophilic patients with low bone mineral density (BMD). Objective: The study was carried out on Iraqi patients with hemophilia at the National Center of Hematology, Mustansiriyah University. Method: Sixty-eight male patients were involved in this study, with ages ranging from (14 to 53) years. Along with the patient group, 18 healthy subjects with matched age and gender were involved as the control group. Various hematological parameters were determined in the samples of healthy and patient subjects. Results: The results found that; only  39.7% of patients have positive DEXA scan characterized by low BMD (abbreviated as DX+) and 60.3 % with normal BMD (abbreviated as DX0), and reveal non-significant in ABO system distribution; all RBCs indices, WBC, prothrombin time, and platelets count (PLT) in patients (DX+, DX0) and control groups, higher NLR ratio was greater in patients in the DX+ group than in the DX0 and control groups; furthermore Activated-partial thromboplastin time (APTT) in DX+ and DX0 groups of patients are significantly (P ? 0.0001) higher than in control group. Conclusion: the increase in neutrophils-lymphocytes ratio (NLR) and prolonged of APTT may be a marker that increases the risk of low bone density development in hemophilic patients.

Keywords: Hemophilia, DEXA scan, BMD, NLR, APTT

References


Adler, R. A. (2011). Osteoporosis in men: what has changed?. Current osteoporosis reports, 9(1), 31-35.

Ahmed SG, Kagu MB, Ibrahim UA and Bukar AA (2015). The frequency of iron deficiency among patients with haemophilia-A in northern Nigeria: correlation with the disease severity and clinical implications. Egypt J Haematol; 40:85-9.

Alli, N., Vaughan, J., Louw, S., Schapkaitz, E and Mahlangu, J (2018). Inherited bleeding disorders. South African Medical Journal, 108(1): 9-15.

Anagnostis, P., Vakalopoulou, S., Slavakis, A., Charizopoulou, M., Kazantzidou, E., Chrysopoulou, T., and Garipidou, V (2012). Reduced bone mineral density in patients with Haemophilia A and B in Northern Greece. Thrombosis and haemostasis; 107(03): 545-551.

Ashritha A, Delhi Kumar CG, Sahoo J and Nalini P (2019). Evaluation of Bone Mineral Density in Children with Hemophilia: An Observational Case-Control Study. J Pediatr Hematol Oncol; 41 (7): 511-514.

Bain BJ, Bates I, Laffan MA, and Lewis SM (2012). Dacie and Lewis practical haematology. China: Churchill Livingstone: 214-58.

Dagli, M., Kutlucan, A., Abusoglu, S., Basturk, A., Sozen, M., Kutlucan, L and Yilmaz, F. (2018). Evaluation of bone mineral density (BMD) and indicators of bone turnover in patients with hemophilia. Bosnian Journal of Basic Medical Sciences; 18(2): 206.

Daniels G (2009). The molecular genetics of blood group polymorphism. Hum Genet; 126: 729-742.

Ekinci O, Demircioglu S, Dogan A, Merter M, Yildiz S and Demir C (2019). Decreased bone mineral density and associated factors in severe haemophilia A patients: A case-control study. Haemophilia. 2019; 25 (5): e315-e321. 

Farah, R., Nseir, W., Kagansky, D and Khamisy-farah, R. (2020). The role of neutrophil-lymphocyte ratio, and mean platelet volume in detecting patients with acute venous thromboembolism. Journal of Clinical Laboratory Analysis; 34(1): e23010.

Fischer K, Pendu R, van Schooten CJ, van Dijk K, Denis CV, van den Berg HM and Lenting PJ (2009). Models for prediction of factor VIII half-life in severe haemophiliacs: distinct approaches for blood group O and non-O patients. PLoS One; 4 (8): e6745

Franchini M, Coppola A, Mengoli C, Rivolta GF, Riccardi F, Minno GD and Tagliaferri A (2017). Blood group O protects against inhibitor development in severe hemophilia-A patients. Semin Thromb Hemost; 43 (1): 69–74.

Gamal Andrawes N, Hashem Fayek M, Salah El-Din N and Atef Mostafa R (2020). Effect of low-dose factor VIII prophylaxis therapy on bone mineral density and 25(OH) vitamin D level in children with severe haemophilia A. Haemophilia; 26 (2): 325-332.

Gay ND, Lee SC, Liel MS, Sochacki P, Recht M and Taylor JA (2015). Increased fracture rates in people with haemophilia: a 10-year single institution retrospective analysis. Br J Haematol; 170 (4): 584-6. 

Gebetsberger J, Schirmer M, Wurzer WJ and Streif W (2022) Low Bone Mineral Density in Hemophiliacs. Front Med; 9: 794456.

Gerstner G, Damiano ML, Tom A, Worman C, Schultz W, Recht M and Stopeck AT (2009). Prevalence and risk factors associated with decreased bone mineral density in patients with haemophilia. Haemophilia; 15 (2): 559-65. 

Hameed EZ, Salih KM and Al-Rahal NK (2020). Influence of TNF-α in hemophilic arthropathy. Biochem Cell Arch; 20 (1): 1123-1127.

Huang C, Li S (2016). Association of blood neutrophil lymphocyte ratio in the patients with postmenopausal osteoporosis. Pak J Med Sci; 32(3):762-5.

Kadhim K A-R, Al-Lami FH, and Baldawi KH (2019). Epidemiological Profile of Hemophilia in Baghdad-Iraq. INQUIRY; 56: 1-8.

Kadhim KA-R, Al-Lami FH, and Baldawi KH (2019).  Epidemiological Profile of Hemophilia in Baghdad-Iraq. Inquiry; 56: 1-8.

Katsarou O, Terpos E, Chatzismalis P, Provelengios S, Adraktas T, Hadjidakis D, et al. Increased bone resorption is impli­cated in the pathogenesis of bone loss in hemophiliacs: Correlations with hemophilic arthropathy and HIV infection. Ann Hematol 2010; 89(1):67-74.

Kovacs CS (2008). Hemophilia, low bone mass, and osteopenia/osteoporosis. Transfus Apher Sci; 38 (1): 33-40.

Linari S, Melchiorre D, Pieri L, Tofani L, Fanelli A, Brogi M and Castaman G (2020). Low bone mass and hypovitaminosis D in haemophilia: A single-Centre study in patients with severe and moderate haemophilia A and B. Haemophilia; 26 (5): 898-906.

Lippi, G., Meschi, T and Borghi, L (2012). Variation of activated partial thromboplastin time according to age and sex in a large population study: analytical and clinical implications. Blood Coagulation & Fibrinolysis; 23(2): 177-178.

Mansouritorghabeh H (2015). Clinical and Laboratory Approaches to Hemophilia A. Iran J Med Sci; 40 (3): 194-205.

Martineau P, Morgan SL and Leslie WD (2021). Bone mineral densitometry reporting: pearls and pitfalls. Canadian Association of Radiologists Journal; 72 (3): 490-504.

Omar, M., Tanriverdi, O., Cokmert, S., Oktay, E., Yersal, O., Pilanci, K. N and Turkish Descriptive Oncological Researches Group. (2018). Role of increased mean platelet volume (MPV) and decreased MPV/platelet count ratio as poor prognostic factors in lung cancer. The clinical respiratory journal; 12(3): 922-929.

Önder, A., Gizli Çoban, Ö and Sürer Adanir, A. (2021). Elevated neutrophil-to-lymphocyte ratio in children and adolescents with attention-deficit/hyperactivity disorder. International Journal of Psychiatry in Clinical Practice; 25(1): 43-48.

Orfanu, A. E., Popescu, C., Leu?tean, A., Negru, A. R., Tiliscan, C., Arama, V and Arama, ?. S. (2017). The importance of haemogram parameters in the diagnosis and prognosis of septic patients. The Journal of Critical Care Medicine, 3(3), 105.

Öztürk, Z. A., Yesil, Y., Kuyumcu, M. E., Bilici, M., Öztürk, N., Yesil, N. K and  Ariogul, S. (2013). Inverse relationship between neutrophil lymphocyte ratio (NLR) and bone mineral density (BMD) in elderly people. Archives of gerontology and geriatrics; 57(1): 81-85.

Paula EV. Avaliação laboratorial da hemostasia. Possibilidades e limitações. In: Zago MA, Falcão RP, Pasquini R, eds. Tratado de Hematologia. São Paulo: Atheneu; 2013:857–64.

Poongavanam P, Nandakumaran J, Shanmugam M and Pachuau H (2017). The frequency of iron deficiency among patients with hemophilia.  J Dent Med Sci; 16 (6): 4-9

Proulle V, Hugel B, Guillet B., Grunebaum L, Lambert T, Freyssinet J-M and Dreyfus M (2005) Circulating microparticles are elevated in haemophiliacs and non haemophilic individuals aged <18 years. Br J Haematol; 131: 487–489.

Rasha Ibrahim Salman, Khalid Mahdi Salih, Nidal Karim Al-Rahal. (2024). Association Between Low Bone Mineral Density in Hemophilia Patients and Musculoskeletal Function Impairments, Journal of Angiotherapy, 8(2), 1-8, 9471

Rasmussen, K. L., Philips, M., Tripodi, A and Goetze, J. P. (2020). Unexpected, isolated activated partial thromboplastin time prolongation: A practical mini-review. European Journal of Haematology, 104(6), 519-525.

Riedl J, Ay C and Pabinger I (2017). Platelets and hemophilia: A review of the literature. Thromb Res; 155:131-139.

Rogers GM, Lehman CM. Hemostasis screening assays. In: Bennett ST, Lehman CM, Rodgers GM, eds. Laboratory Hemostasis:A Practical Guide for Pathologists. New York, NY: Springer;2007:69–81.

Roushan N, Meysamie A, Managhchi M, Esmaili J, and Dormohammadi T (2014). Bone mineral density in hemophilia patients. Indian J Hematol Blood Transfus; 30: 351-5.

Sagir GA, Modu BK   and Umma AI (2017). Correlation between ABO blood groups and spontaneous bleeding rates in severe haemophilia-A. Sudan Med J; 53 (3): 162-169

Song, H., Kim, H. J., Park, K. N., Kim, S. H., Oh, S. H and  Youn, C. S. (2021). Neutrophil to lymphocyte ratio is associated with in-hospital mortality in older adults admitted to the emergency department. The American Journal of Emergency Medicine; 40: 133-137.

Sossa Melo CL, Wandurraga EA, Peña AM, Jiménez SI, Salazar LA, Ochoa ME, Luna-Gonzalez ML, Ortiz ML, Morales K, Ayala-Castillo M, Reyes DL and Chalela CM (2018). Low bone mineral density and associated factors in patients with haemophilia in Colombia. Haemophilia; 24 (4): e222-e229. 

Srivastava, A., Brewer, A. K., Mauser-Bunschoten, E. P., Key, N. S., Kitchen, S., Llinas, A and  Treatment Guidelines Working Group The World Federation Of Hemophilia. (2013). Guidelines for the management of hemophilia. Haemophilia; 19(1): e1-e47.  

Tuan SH, Hu LY, Sun SF, Huang WY, Chen GB, Li MH and Liou IH (2019). Risk of osteoporotic fractures as a consequence of haemophilia: A nationwide population-based cohort study. Haemophilia; 25 (5): 876-884.

Vlot AJ, Mauser-Bunschoten EP, Zarkova AG, Haan E, Kruitwagen CL, Sixma JJ, and van den Berg HM (2000). The half-life of infused factor VIII is shorter in hemophiliac patients with blood group O than in those with blood group A. Thromb Haemost; 83 (1): 65-9. 

Walsh PN, Rainsford SG and Biggs R (1973). Platelet coagulant activities and clinical severity in haemophilia. Thromb Diath Haemorrh; 29: 722-729

Watts, N. B., Adler, R. A., Bilezikian, J. P., Drake, M. T., Eastell, R., Orwoll, E. S., & Finkelstein, J. S. (2012). Osteoporosis in men: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 97(6), 1802-1822.

World Federation of Hemophilia (2017). Report on the annual global survey 2017.

World Federation of Hemophilia (2017). The annual global survey 2017

Yee DL (2006). Platelets as Modifiers of Clinical Phenotype in Hemophilia. Sci World J; 6: 661–668

Zhou X, Qin F, Li H, Li Z, Liu Y, Yi Z and Sun J (2015). Platelet-Derived Microparticles May Influence Phenotypic Heterogeneity in Patients with Severe Hemophilia. Blood; 126 (23): 4673.

PDF
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
440
View

Share