References
Ahmed, L.M., Hassanein, K.M., Mohamed, F.A., Elfaham, T.H. (2023). Formulation and evaluation of simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci. Rep. 13(1), 17941.
https://doi.org/10.1038/s41598-023-44304-2
Andjic, M., Božin, B., Draginic, N., Kocovic, A., Jeremic, J. N., Tomovic, M., ... & Bradic, J. V. (2021). Formulation and evaluation of Helichrysum italicum essential oil-based topical formulations for wound healing in diabetic rats. Pharmaceuticals, 14(8), 813.
https://doi.org/10.3390/ph14080813
Baptista-Silva, S., Borges, S., Costa-Pinto, A.R., Costa, R., Amorim, M., Dias, J.R., Oliveira, A.L. (2021). In situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomater. Sci. Eng. 7(4), 1573-1586.
https://doi.org/10.1021/acsbiomaterials.0c01745
Bovone, G., Guzzi, E.A., Bernhard, S., Weber, T., Dranseikiene, D., Tibbitt, M.W. (2022). Supramolecular reinforcement of polymer-nanoparticle hydrogels for modular materials design. Adv Mater. 34(9), 2106941.
https://doi.org/10.1002/adma.202106941
Cho, Y.D., Kim, K.H., Lee, Y.M., Ku, Y., Seol, Y.J. (2021). Periodontal wound healing and tissue regeneration: A narrative review. Pharm. 14(5), 456.
https://doi.org/10.3390/ph14050456
Dong, R., Guo, B. (2021). Smart wound dressings for wound healing. Nano Today. 41, 101290.
https://doi.org/10.1016/j.nantod.2021.101290
Duarte, J.A., de Barros, A.L.B., Leite, E.A. (2021). The potential use of simvastatin for cancer treatment: A review. Biomed. Pharmacother. 141, 111858.
https://doi.org/10.1016/j.biopha.2021.111858
Farahani, M., Shafiee, A. (2021). Wound healing: From passive to smart dressings. Adv. Healthc. Mater. 10(16), 2100477.
https://doi.org/10.1002/adhm.202100477
Gaspar-Pintiliescu, A., Stanciuc, A. M., & Craciunescu, O. (2019). Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. International journal of biological macromolecules, 138, 854-865.
https://doi.org/10.1016/j.ijbiomac.2019.07.155
Geana, E. I., Ciucure, C. T., Tamaian, R., Marinas, I. C., Gaboreanu, D. M., Stan, M., & Chitescu, C. L. (2023). Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants, 12(7), 1383.
https://doi.org/10.3390/antiox12071383
Grada, A., Phillips, T.J. (2022). Nutrition and cutaneous wound healing. Clin. Dermatol. 40(2), 103-113.
https://doi.org/10.1016/j.clindermatol.2021.10.002
Guo, Z., Zhang, Z., Zhang, N., Gao, W., Li, J., Pu, Y., Xie, J. (2022). A Mg2+/polydopamine composite hydrogel for the acceleration of infected wound healing. Bioact. Mater. 15, 203-213.
https://doi.org/10.1016/j.bioactmat.2021.11.036
Hu, W., Chen, Z., Chen, X., Feng, K., Hu, T., Huang, B., Wang, Z. (2023). Double-network cellulose-based hybrid hydrogels with favorable biocompatibility and antibacterial activity for wound healing. Carbohydr. Polym. 319, 121193.
https://doi.org/10.1016/j.carbpol.2023.121193
Ikram Ullah Khan (2022). Synthesis and Characterization Gold Nanoparticles using polymeric micelles to Induce Block Copolymer Composition, Biosensors and Nanotheranostics, 1(1), 1-6, 9837
Isopencu, G. O., Covaliu-Mierla, C. I., & Deleanu, I. M. (2023). From Plants to Wound Dressing and Transdermal Delivery of Bioactive Compounds. Plants, 12(14), 2661.
https://doi.org/10.3390/plants12142661
Kant, V., Kumari, P., Jitendra, D. K., Ahuja, M., & Kumar, V. (2021). Nanomaterials of natural bioactive compounds for wound healing: Novel drug delivery approach. Current Drug Delivery, 18(10), 1406-1425.
https://doi.org/10.2174/1567201818666210729103712
Koshak, A.E., Algandaby, M.M., Mujallid, M.I., Abdel-Naim, A.B., Alhakamy, N.A., Fahmy, U.A., Esmat, A. (2021). Wound healing activity of Opuntia ficus-indica fixed oil formulated in a self-nano emulsifying formulation. Int J Nanomedicine. 3889-3905.
https://doi.org/10.2147/IJN.S299696
Li, S., Zhang, Y., Ma, X., Qiu, S., Chen, J., Lu, G., Wei, Y. (2022). Antimicrobial lignin-based Polyurethane/Ag composite foams for improving wound healing. Biomacromolecules. 23(4), 1622-1632.
https://doi.org/10.1021/acs.biomac.1c01465
Liang, Y., Liang, Y., Zhang, H., Guo, B. (2022). Antibacterial biomaterials for skin wound dressing. Asian J. Pharm. Sci. 17(3), 353-384.
https://doi.org/10.1016/j.ajps.2022.01.001
Luo, R., Dai, J., Zhang, J., Li, Z. (2021). Accelerated skin wound healing by electrical stimulation. Adv. Healthc. Mater. 10(16), 2100557.
https://doi.org/10.1002/adhm.202100557
Lyu, W., Ma, Y., Chen, S., Li, H., Wang, P., Chen, Y., Feng, X. (2021). Flexible ultrasonic patch for accelerating chronic wound healing. Adv. Healthc. Mater. 10(19), 2100785.
https://doi.org/10.1002/adhm.202100785
Meng, Y., Chen, L., Chen, Y., Shi, J., Zhang, Z., Wang, Y., Bu, W. (2022). Reactive metal boride nanoparticles trap lipopolysaccharide and peptidoglycan for bacteria-infected wound healing. Nat. Commun. 13(1), 7353.
https://doi.org/10.1038/s41467-022-35050-6
Sofrona, E., Tziveleka, L. A., Harizani, M., Koroli, P., Sfiniadakis, I., Roussis, V., ... & Ioannou, E. (2020). In vivo evaluation of the wound healing activity of extracts and bioactive constituents of the marine isopod Ceratothoa oestroides. Marine Drugs, 18(4), 219.
https://doi.org/10.3390/md18040219
Vendrame, S., Alaba, T., Marchi, N., Tsakiroglou, P., & Klimis-Zacas, D. (2024). In vitro and in vivo evaluation of bioactive compounds from berries for wound healing. Current Developments in Nutrition, 102078.
https://doi.org/10.1016/j.cdnut.2024.102078
Zhang, W., Mehta, A., Tong, Z., Esser, L., Voelcker, N.H. (2021). Development of polymeric nanoparticles for blood-brain barrier transfer-strategies and challenges. Adv. Sci. 8(10), 2003937.
https://doi.org/10.1002/advs.202003937
Zhang, X., Li, Y., He, D., Ma, Z., Liu, K., Xue, K., Li, H. (2021). An effective strategy for preparing macroporous and self-healing bioactive hydrogels for cell delivery and wound healing. J. Chem. Eng. 425, 130677.
https://doi.org/10.1016/j.cej.2021.130677