References
Aluko, R. (2012). Bioactive Peptides. Food Science Text Series, 37–61. https://doi.org/10.1007/978-1-4614-3480-1_3
Ameen, F., AlNadhari, S., & Al-Homaidan, A. A. (2021). Marine microorganisms as an untapped source of bioactive compounds. Saudi Journal of Biological Sciences, 28(1), 224–231. https://doi.org/10.1016/j.sjbs.2020.09.052
Ashu, E. E., Xu, J., & Yuan, Z.-C. (2019). Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification. Journal of Cancer, 10(8), 1781–1793. https://doi.org/10.7150/jca.31699
Bae, S. Y., Liao, L., Park, S. H., Kim, W. K., Shin, J., & Lee, S. K. (2020). Antitumor Activity of Asperphenin A, a Lipopeptidyl Benzophenone from Marine-Derived Aspergillus sp. Fungus, by Inhibiting Tubulin Polymerization in Colon Cancer Cells. Marine Drugs, 18(2), 110. https://doi.org/10.3390/md18020110
Bakal, S. N., Bereswill, S., & Heimesaat, M. M. (2017). Finding novel antibiotic substances from medicinal plants — Antimicrobial properties of Nigella sativa directed against multidrug resistant bacteria. European Journal of Microbiology and Immunology, 7(1), 92–98. https://doi.org/10.1556/1886.2017.00001
Behal, V. (2000). Bioactive products from streptomyces. Advances in Applied Microbiology, 113–156. https://doi.org/10.1016/s0065-2164(00)47003-6
Bentley, R. (1997). Microbial Secondary Metabolites Play Important Roles in Medicine; Prospects for Discovery of New Drugs. Perspectives in Biology and Medicine, 40(3), 364–394. https://doi.org/10.1353/pbm.1997.0009
Bérdy, J. (2005). Bioactive Microbial Metabolites. The Journal of Antibiotics, 58(1), 1–26. https://doi.org/10.1038/ja.2005.1
BERTASSO, M., HOLZENKÄMPFER, M., ZEECK, A., ANTONIAC, F. D., & FIEDLER, H.-P. (2001). Bagremycin A and B, Novel Antibrotics from Streptomyces sp. Tue 4128. The Journal of Antibiotics, 54(9), 730–736. https://doi.org/10.7164/antibiotics.54.730
Beshkova, D., & Frengova, G. (2012). Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Engineering in Life Sciences, 12(4), 419–432. https://doi.org/10.1002/elsc.201100127
Bhattacharya, D., & Gupta, R. K. (2005). Nanotechnology and Potential of Microorganisms. Critical Reviews in Biotechnology, 25(4), 199–204. https://doi.org/10.1080/07388550500361994
Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559–565. https://doi.org/10.1016/j.foodchem.2009.05.021
Cammack, R., Atwood, T., Campbell, P., Parish, H., Smith, A., Vella, F., & Stirling, J. (Eds.). (2006). Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press. https://doi.org/10.1093/acref/9780198529170.001.0001
Chen, X.-H., Zhou, G.-L., Sun, C.-X., Zhang, X., Zhang, G.-J., Zhu, T.-J., Li, J., Che, Q., & Li, D.-H. (2020). Penicacids E–G, three new mycophenolic acid derivatives from the marine-derived fungus Penicillium parvum HDN17-478. Chinese Journal of Natural Medicines, 18(11), 850–854. https://doi.org/10.1016/s1875-5364(20)60027-9
Chen, Y.-T., Yuan, Q., Shan, L.-T., Lin, M.-A., Cheng, D.-Q., & Li, C.-Y. (2013). Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncology Letters, 5(6), 1787–1792. https://doi.org/10.3892/ol.2013.1284
Clark, B., Capon, R. J., Stewart, M., Lacey, E., Tennant, S., & Gill, J. H. (2004). Blanchaquinone: A New Anthraquinone from an AustralianStreptomycessp. Journal of Natural Products, 67(10), 1729–1731. https://doi.org/10.1021/np049826v
Cong, Z., Huang, X., Liu, Y., Liu, Y., Wang, P., Liao, S., Yang, B., Zhou, X., Huang, D., & Wang, J. (2018). Cytotoxic anthracycline and antibacterial tirandamycin analogues from a marine-derived Streptomyces sp. SCSIO 41399. The Journal of Antibiotics, 72(1), 45–49. https://doi.org/10.1038/s41429-018-0103-6
Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008
Cramer, W. A., Heymann, J. B., Schendel, S. L., Deriy, B. N., Cohen, F. S., Elkins, P. A., & Stauffacher, C. V. (1995). Structure-Function of the Channel-Forming Colicins. Annual Review of Biophysics and Biomolecular Structure, 24(1), 611–641. https://doi.org/10.1146/annurev.bb.24.060195.003143
De Silva, D. D., Rapior, S., Sudarman, E., Stadler, M., Xu, J., Aisyah Alias, S., & Hyde, K. D. (2013). Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity, 62(1), 1–40. https://doi.org/10.1007/s13225-013-0265-2
Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, 69(2), 193–202. https://doi.org/10.1007/bf00399424
Demain, A. L. (2013). Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology & Biotechnology, 41(2), 185–201. https://doi.org/10.1007/s10295-013-1325-z
Demain, A. L. (2014). Valuable Secondary Metabolites from Fungi. Fungal Biology, 1–15. https://doi.org/10.1007/978-1-4939-1191-2_1
Demain, A. L., & Fang, A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1–39. https://doi.org/10.1007/3-540-44964-7_1
Demain, A. L., & Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62(1), 5–16. https://doi.org/10.1038/ja.2008.16
Desjardine, K., Pereira, A., Wright, H., Matainaho, T., Kelly, M., & Andersen, R. J. (2007). Tauramamide, a Lipopeptide Antibiotic Produced in Culture by Brevibacillus laterosporus Isolated from a Marine Habitat: Structure Elucidation and Synthesis. Journal of Natural Products, 70(12), 1850–1853. https://doi.org/10.1021/np070209r
El-Gendy, M. M. A., Hawas, U. W., & Jaspars, M. (2008). Novel Bioactive Metabolites from a Marine Derived Bacterium Nocardia sp. ALAA 2000. The Journal of Antibiotics, 61(6), 379–386. https://doi.org/10.1038/ja.2008.53
Engelhardt, K., Degnes, K. F., Kemmler, M., Bredholt, H., Fjærvik, E., Klinkenberg, G., Sletta, H., Ellingsen, T. E., & Zotchev, S. B. (2010). Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine Nocardiopsis Species. Applied and Environmental Microbiology, 76(15), 4969–4976. https://doi.org/10.1128/aem.00741-10
Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angewandte Chemie International Edition, 42(3), 355–357. https://doi.org/10.1002/anie.200390115
Firáková, S., Šturdíková, M., & Múcková, M. (2007). Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia, 62(3). https://doi.org/10.2478/s11756-007-0044-1
Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556
Guaadaoui, A., Benaicha, S., Elmajdoub, N., Bellaoui, M., & Hamal, A. (2014). What is a Bioactive Compound? A Combined Definition for a Preliminary Consensus. International Journal of Nutrition and Food Sciences, 3(3), 174. https://doi.org/10.11648/j.ijnfs.20140303.16
Hamaki, T., Suzuki, M., Fudou, R., Jojima, Y., Kajiura, T., Tabuchi, A., Sen, K., & Shibai, H. (2005). Isolation of novel bacteria and actinomycetes using soil-extract agar medium. Journal of Bioscience and Bioengineering, 99(5), 485–492. https://doi.org/10.1263/jbb.99.485
Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105(12), 1422–1432. https://doi.org/10.1017/s0953756201004725
Hayes, M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2007). Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnology Journal, 2(4), 435–449. https://doi.org/10.1002/biot.200700045
Jiao, P., Swenson, D. C., Gloer, J. B., Campbell, J., & Shearer, C. A. (2006). Decaspirones A−E, Bioactive Spirodioxynaphthalenes from the Freshwater Aquatic FungusDecaisnella thyridioides. Journal of Natural Products, 69(12), 1667–1671. https://doi.org/10.1021/np060385k
Joshi, R. D., & Kulkarni, N. S. (2016). Optimization studies on L-asparaginase production from endophytic Bacteria. International Journal of Applied Research, 2(3), 624–629. https://www.allresearchjournal.com/archives/?year=2016&vol=2&issue=3&part=K&ArticleId=1707
Jung, H. J., Kim, Y., Lee, H. B., & Kwon, H. J. (2014). Antiangiogenic Activity of the Lipophilic Antimicrobial Peptides from an Endophytic Bacterial Strain Isolated from Red Pepper Leaf. Molecules and Cells, 38(3), 273–278. https://doi.org/10.14348/molcells.2015.2320
Kai, H., Yamashita, M., Takase, S., Hashimoto, M., Muramatsu, H., Nakamura, I., Yoshikawa, K., Ezaki, M., Nitta, K., Watanabe, M., Inamura, N., & Fujie, A. (2013). KB425796-A, a novel antifungal antibiotic produced by Paenibacillus sp. 530603. The Journal of Antibiotics, 66(8), 465–471. https://doi.org/10.1038/ja.2013.63
Kalsoom, M., Ur Rehman, F., Shafique, T., Junaid, S., Khalid, N., Adnan, M., Zafar, I., Abdullah Tariq, M., Raza, M. A., Zahra, A., & Ali, H. (2020). Biological importance of microbes in agriculture, food and pharmaceutical industry: a review. Innovare Journal of Life Sciences, 1–4. https://doi.org/10.22159/ijls.2020.v8i6.39845
Kamiloglu, S., Tomas, M., Ozdal, T., Yolci-Omeroglu, P., & Capanoglu, E. (2021). Bioactive component analysis. Innovative Food Analysis, 41–65. https://doi.org/10.1016/b978-0-12-819493-5.00002-9
Kanasaki, R., Abe, F., Kobayashi, M., Katsuoka, M., Hashimoto, M., Takase, S., Tsurumi, Y., Fujie, A., Hino, M., Hashimoto, S., & Hori, Y. (2006). FR220897 and FR220899, Novel Antifungal Lipopeptides from Coleophoma empetri No. 14573. The Journal of Antibiotics, 59(3), 149–157. https://doi.org/10.1038/ja.2006.22
Kanoh, K., Okada, A., Adachi, K., Imagawa, H., Nishizawa, M., Matsuda, S., Shizuri, Y., & Utsumi, R. (2008). Ascochytatin, a Novel Bioactive Spirodioxynaphthalene Metabolite Produced by the Marine-derived Fungus, Ascochyta sp. NGB4. The Journal of Antibiotics, 61(3), 142–148. https://doi.org/10.1038/ja.2008.123
Kaur, G., Hollingshead, M., Holbeck, S., Schauer-Vukašinovic, V., Camalier, Richard F., Dömling, A., & Agarwal, S. (2006). Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochemical Journal, 396(2), 235–242. https://doi.org/10.1042/bj20051735
Kharatyan, S. G. (1978). Microbes as Food for Humans. Annual Review of Microbiology, 32(1), 301–327. https://doi.org/10.1146/annurev.mi.32.100178.001505
Komal, A. (2021). Biologically active peptides from marine proteobacteria: Discussion article. Open Journal of Bacteriology, 005-012. https://doi.org/10.17352/ojb.000018
Lai, D., Wang, A., Cao, Y., Zhou, K., Mao, Z., Dong, X., Tian, J., Xu, D., Dai, J., Peng, Y., Zhou, L., & Liu, Y. (2016). Bioactive Dibenzo-α-pyrone Derivatives from the Endophytic Fungus Rhizopycnis vagum Nitaf22. Journal of Natural Products, 79(8), 2022–2031. https://doi.org/10.1021/acs.jnatprod.6b00327
Laport, M. S., Santos, O. C. S., & Muricy, G. (2009). Marine sponges: potential sources of new antimicrobial drugs. Current Pharmaceutical Biotechnology, 10(1), 86–105. https://doi.org/10.2174/138920109787048625
Li, H., Cao, K., Cong, P., Liu, Y., Cui, H., & Xue, C. (2018). Structure characterization and antitumor activity of the extracellular polysaccharide from the marine fungus Hansfordia sinuosae. Carbohydrate Polymers, 190, 87–94. https://doi.org/10.1016/j.carbpol.2018.02.077
Li, W., Yang, X., Yang, Y., Zhao, L., Xu, L., & Ding, Z. (2014). A new anthracycline from endophytic Streptomyces sp. YIM66403. The Journal of Antibiotics, 68(3), 216–219. https://doi.org/10.1038/ja.2014.128
Ma, M., Ge, H., Yi, W., Wu, B., & Zhang, Z. (2020). Bioactive drimane sesquiterpenoids and isocoumarins from the marine-derived fungus Penicillium minioluteum ZZ1657. Tetrahedron Letters, 61(7), 151504. https://doi.org/10.1016/j.tetlet.2019.151504
Mahdinia, E., Demirci, A., & Berenjian, A. (2016). Production and application of menaquinone-7 (vitamin K2): a new perspective. World Journal of Microbiology and Biotechnology, 33(1). https://doi.org/10.1007/s11274-016-2169-2
Maskey, R. P., Li, F. C., Qin, S., Fiebig, H.H., & Laatsch, H. (2003). Chandrananimycins A-C: Production of Novel Anticancer Antibiotics from a Marine Actinomadura sp. Isolate M048 by Variation of Medium Composition and Growth Conditions. The Journal of Antibiotics, 56(7), 622–629. https://doi.org/10.7164/antibiotics.56.622
Mayer, A. M. S., & Hamann, M. T. (2002). Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 132(3), 315–339. https://doi.org/10.1016/s1532-0456(02)00094-7
Newman, D. J., & Cragg, G. M. (2004). Advanced Preclinical and Clinical Trials of Natural Products and Related Compounds from Marine Sources. Current Medicinal Chemistry, 11(13), 1693–1713. https://doi.org/10.2174/0929867043364982
Núñez, L. E., Nybo, S. E., González-Sabín, J., Pérez, M., Menéndez, N., Braña, A. F., He, M., Morís, F., Salas, J. A., Rohr, J., & Méndez, C. (2012). A novel mithramycin analogue with high antitumor activity and less toxicity generated by combinatorial biosynthesis. Journal of Medicinal Chemistry, 55(12), 5813–5825. https://doi.org/10.1021/jm300234t
Oku, N., Kawabata, K., Adachi, K., Katsuta, A., & Shizuri, Y. (2008). Unnarmicins A and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. The Journal of Antibiotics, 61(1), 11–17. https://doi.org/10.1038/ja.2008.103
Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today, 21(2), 204–207. https://doi.org/10.1016/j.drudis.2015.01.009
Petruk, G., Roxo, M., De Lise, F., Mensitieri, F., Notomista, E., Wink, M., Izzo, V., & Monti, D. M. (2018). The marine Gram-negative bacterium Novosphingobium sp. PP1Y as a potential source of novel metabolites with antioxidant activity. Biotechnology Letters, 41(2), 273–281. https://doi.org/10.1007/s10529-018-02636-4
Pettit, G. R., Knight, J. C., Herald, D. L., Pettit, R. K., Hogan, F., Mukku, V. J. R. V., Hamblin, J. S., Dodson, M. J., & Chapuis, J.-C. (2009). Antineoplastic Agents. 570. Isolation and Structure Elucidation of Bacillistatins 1 and 2 from a MarineBacillus silvestris†,‡. Journal of Natural Products, 72(3), 366–371. https://doi.org/10.1021/np800603u
Romano, G., Costantini, M., Sansone, C., Lauritano, C., Ruocco, N., & Ianora, A. (2017). Marine microorganisms as a promising and sustainable source of bioactive molecules. Marine Environmental Research, 128, 58–69. https://doi.org/10.1016/j.marenvres.2016.05.002
Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Rodríguez-Sanoja, R., Sánchez, S., & Langley, E. (2010). Production of microbial secondary metabolites: regulation by the carbon source. Critical Reviews in Microbiology, 36(2), 146–167. https://doi.org/10.3109/10408410903489576
Shanahan, F. (2000). IMMUNOLOGY: Therapeutic Manipulation of Gut Flora. Science, 289(5483), 1311–1312. https://doi.org/10.1126/science.289.5483.1311
Silvers, M. A., Pakhomova, S., Neau, D. B., Silvers, W. C., Anzalone, N., Taylor, C. M., & Waldrop, G. L. (2016). Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B. Biochemistry, 55(33), 4666–4674. https://doi.org/10.1021/acs.biochem.6b00641
Singh, M., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0942-z
Singh, B.P., Rated, M.E., Rodriguez-Cuoto, S., Polizeli, M.dL.T.dM., & Li, W.-J. (2019). Editorial: Microbial secondary metabolites: Recent developments and technological challenges. Frontiers in Microbiology, 10: 914. doi:10.3389/fmicb.2019.00914
Strohl, W. R. (1997). Biotechnology of antibiotics. In Open WorldCat. M. Dekker. https://www.worldcat.org/title/biotechnology-of-antibiotics/oclc/36923119
Taechowisan, T., Chanaphat, S., Ruensamran, W., & S. Phutdhawong, W. (2012). Anti-Inflammatory Effect of 3-Methylcarbazoles on RAW 264.7 Cells Stimulated with LPS, Polyinosinic-Polycytidylic Acid and Pam3CSK. Advances in Microbiology, 02(02), 98–103. https://doi.org/10.4236/aim.2012.22013
Trischman, J. A., Jensen, P. R., & Fenical, W. (1994). Halobacillin: A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Letters, 35(31), 5571–5574. https://doi.org/10.1016/s0040-4039(00)77249-2
Venegas-Ortega, M. G., Flores-Gallegos, A. C., Martínez-Hernández, J. L., Aguilar, C. N., & Nevárez-Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455
Vitorino, L.C., & Bessa, L.A. (2017). Technological Microbiology: Development and Applications. Frontiers in Microbiology, 8, 827. doi:10.3389/fmicb.2017.00827
Wang, S.-X., Zhao, R.-L., Guo, C., Chen, B.-S., Dai, H.-Q., Liu, G.-Q., & Liu, H.-W. (2020). New meroterpenoid compounds from the culture of mushroom Panus lecomtei. Chinese Journal of Natural Medicines, 18(4), 268–272. https://doi.org/10.1016/s1875-5364(20)30033-9
Xiang, H., Sun-Waterhouse, D., Waterhouse, G.I.N.., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203-243. https://doi.org/10.1016/j.fshw.2019.08.003
Zhang, D., Shu, C., Lian, X., & Zhang, Z. (2018). New Antibacterial Bagremycins F and G from the Marine-Derived Streptomyces sp. ZZ745. Marine Drugs, 16(9), 330. https://doi.org/10.3390/md16090330
Zhao, M., Ruan, Q., Pan, W., Tang, Y., Zhao, Z., & Cui, H. (2020). New polyketides and diterpenoid derivatives from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Fitoterapia, 143, 104561. https://doi.org/10.1016/j.fitote.2020.104561