Angiogenesis, Inflammation & Therapeutics | Online ISSN  2207-872X
REVIEWS   (Open Access)

Unlocking Nature’s Treasure Trove: Exploring Microorganisms for Novel Bioactives

Tasbir Amin1, Abu Bakar Karim1, Israk Iram Oyshe1, Amana Hossain1, Tafsir karim1, Jinath Sultana Jime1, Nayeema Bulbul1, Md. Asaduzzaman Shishir2, Ashrafus Safa3, Md. Fakruddin1*

+ Author Affiliations

Journal of Angiotherapy 7 (1) 1-10 https://doi.org/10.25163/angiotherapy.719345

Submitted: 23 August 2023 Revised: 24 September 2023  Published: 03 October 2023 


Abstract

From the marine environment to plants and animals, microorganisms are everywhere. Microbes happen to be a very prominent resource of metabolites and bioactive compounds and in recent times, many therapeutic compounds have been discovered from microbial sources. This review provides an in-depth exploration into the world of microorganisms as a treasure trove of novel bioactives. Different groups of microbes contain unique metabolites and bioactive that might have the potential as therapeutic agents. So, it is very important to screen microbial metabolites to identify, isolate and characterize for potential therapeutic applications. Microbial metabolites are very advantageous in terms of large-scale production and purity of final products. Considering these advantages, research focusing on screening potential microbial bioactive is a very time demanding one. This comprehensive review aims to inspire researchers and stakeholders to further explore and unlock the vast potential of microorganisms for the discovery and development of innovative bioactive compounds.

Keyword: Microorganisms, Bacteria, Biologics, Therapeutics, Bioactives, Metabolites

References


Aluko, R. (2012). Bioactive Peptides. Food Science Text Series, 37–61. https://doi.org/10.1007/978-1-4614-3480-1_3

Ameen, F., AlNadhari, S., & Al-Homaidan, A. A. (2021). Marine microorganisms as an untapped source of bioactive compounds. Saudi Journal of Biological Sciences, 28(1), 224–231. https://doi.org/10.1016/j.sjbs.2020.09.052

Ashu, E. E., Xu, J., & Yuan, Z.-C. (2019). Bacteria in Cancer Therapeutics: A Framework for Effective Therapeutic Bacterial Screening and Identification. Journal of Cancer, 10(8), 1781–1793. https://doi.org/10.7150/jca.31699

Bae, S. Y., Liao, L., Park, S. H., Kim, W. K., Shin, J., & Lee, S. K. (2020). Antitumor Activity of Asperphenin A, a Lipopeptidyl Benzophenone from Marine-Derived Aspergillus sp. Fungus, by Inhibiting Tubulin Polymerization in Colon Cancer Cells. Marine Drugs, 18(2), 110. https://doi.org/10.3390/md18020110

Bakal, S. N., Bereswill, S., & Heimesaat, M. M. (2017). Finding novel antibiotic substances from medicinal plants — Antimicrobial properties of Nigella sativa directed against multidrug resistant bacteria. European Journal of Microbiology and Immunology, 7(1), 92–98. https://doi.org/10.1556/1886.2017.00001

Behal, V. (2000). Bioactive products from streptomyces. Advances in Applied Microbiology, 113–156. https://doi.org/10.1016/s0065-2164(00)47003-6

Bentley, R. (1997). Microbial Secondary Metabolites Play Important Roles in Medicine; Prospects for Discovery of New Drugs. Perspectives in Biology and Medicine, 40(3), 364–394. https://doi.org/10.1353/pbm.1997.0009

Bérdy, J. (2005). Bioactive Microbial Metabolites. The Journal of Antibiotics, 58(1), 1–26. https://doi.org/10.1038/ja.2005.1

BERTASSO, M., HOLZENKÄMPFER, M., ZEECK, A., ANTONIAC, F. D., & FIEDLER, H.-P. (2001). Bagremycin A and B, Novel Antibrotics from Streptomyces sp. Tue 4128. The Journal of Antibiotics, 54(9), 730–736. https://doi.org/10.7164/antibiotics.54.730

Beshkova, D., & Frengova, G. (2012). Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Engineering in Life Sciences, 12(4), 419–432. https://doi.org/10.1002/elsc.201100127

Bhattacharya, D., & Gupta, R. K. (2005). Nanotechnology and Potential of Microorganisms. Critical Reviews in Biotechnology, 25(4), 199–204. https://doi.org/10.1080/07388550500361994

Bougatef, A., Nedjar-Arroume, N., Manni, L., Ravallec, R., Barkia, A., Guillochon, D., & Nasri, M. (2010). Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chemistry, 118(3), 559–565. https://doi.org/10.1016/j.foodchem.2009.05.021

Cammack, R., Atwood, T., Campbell, P., Parish, H., Smith, A., Vella, F., & Stirling, J. (Eds.). (2006). Oxford Dictionary of Biochemistry and Molecular Biology. Oxford University Press. https://doi.org/10.1093/acref/9780198529170.001.0001

Chen, X.-H., Zhou, G.-L., Sun, C.-X., Zhang, X., Zhang, G.-J., Zhu, T.-J., Li, J., Che, Q., & Li, D.-H. (2020). Penicacids E–G, three new mycophenolic acid derivatives from the marine-derived fungus Penicillium parvum HDN17-478. Chinese Journal of Natural Medicines, 18(11), 850–854. https://doi.org/10.1016/s1875-5364(20)60027-9

Chen, Y.-T., Yuan, Q., Shan, L.-T., Lin, M.-A., Cheng, D.-Q., & Li, C.-Y. (2013). Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncology Letters, 5(6), 1787–1792. https://doi.org/10.3892/ol.2013.1284

Clark, B., Capon, R. J., Stewart, M., Lacey, E., Tennant, S., & Gill, J. H. (2004). Blanchaquinone:  A New Anthraquinone from an AustralianStreptomycessp. Journal of Natural Products, 67(10), 1729–1731. https://doi.org/10.1021/np049826v

Cong, Z., Huang, X., Liu, Y., Liu, Y., Wang, P., Liao, S., Yang, B., Zhou, X., Huang, D., & Wang, J. (2018). Cytotoxic anthracycline and antibacterial tirandamycin analogues from a marine-derived Streptomyces sp. SCSIO 41399. The Journal of Antibiotics, 72(1), 45–49. https://doi.org/10.1038/s41429-018-0103-6

Cragg, G. M., & Newman, D. J. (2013). Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(6), 3670–3695. https://doi.org/10.1016/j.bbagen.2013.02.008

Cramer, W. A., Heymann, J. B., Schendel, S. L., Deriy, B. N., Cohen, F. S., Elkins, P. A., & Stauffacher, C. V. (1995). Structure-Function of the Channel-Forming Colicins. Annual Review of Biophysics and Biomolecular Structure, 24(1), 611–641. https://doi.org/10.1146/annurev.bb.24.060195.003143

De Silva, D. D., Rapior, S., Sudarman, E., Stadler, M., Xu, J., Aisyah Alias, S., & Hyde, K. D. (2013). Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Diversity, 62(1), 1–40. https://doi.org/10.1007/s13225-013-0265-2

Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, 69(2), 193–202. https://doi.org/10.1007/bf00399424

Demain, A. L. (2013). Importance of microbial natural products and the need to revitalize their discovery. Journal of Industrial Microbiology & Biotechnology, 41(2), 185–201. https://doi.org/10.1007/s10295-013-1325-z

Demain, A. L. (2014). Valuable Secondary Metabolites from Fungi. Fungal Biology, 1–15. https://doi.org/10.1007/978-1-4939-1191-2_1

Demain, A. L., & Fang, A. (2000). The natural functions of secondary metabolites. Advances in Biochemical Engineering/Biotechnology, 69, 1–39. https://doi.org/10.1007/3-540-44964-7_1

Demain, A. L., & Sanchez, S. (2009). Microbial drug discovery: 80 years of progress. The Journal of Antibiotics, 62(1), 5–16. https://doi.org/10.1038/ja.2008.16

Desjardine, K., Pereira, A., Wright, H., Matainaho, T., Kelly, M., & Andersen, R. J. (2007). Tauramamide, a Lipopeptide Antibiotic Produced in Culture by Brevibacillus laterosporus Isolated from a Marine Habitat: Structure Elucidation and Synthesis. Journal of Natural Products, 70(12), 1850–1853. https://doi.org/10.1021/np070209r

El-Gendy, M. M. A., Hawas, U. W., & Jaspars, M. (2008). Novel Bioactive Metabolites from a Marine Derived Bacterium Nocardia sp. ALAA 2000. The Journal of Antibiotics, 61(6), 379–386. https://doi.org/10.1038/ja.2008.53

Engelhardt, K., Degnes, K. F., Kemmler, M., Bredholt, H., Fjærvik, E., Klinkenberg, G., Sletta, H., Ellingsen, T. E., & Zotchev, S. B. (2010). Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine Nocardiopsis Species. Applied and Environmental Microbiology, 76(15), 4969–4976. https://doi.org/10.1128/aem.00741-10

Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angewandte Chemie International Edition, 42(3), 355–357. https://doi.org/10.1002/anie.200390115

Firáková, S., Šturdíková, M., & Múcková, M. (2007). Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia, 62(3). https://doi.org/10.2478/s11756-007-0044-1

Gaynes, R. (2017). The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerging Infectious Diseases, 23(5), 849–853. https://doi.org/10.3201/eid2305.161556

Guaadaoui, A., Benaicha, S., Elmajdoub, N., Bellaoui, M., & Hamal, A. (2014). What is a Bioactive Compound? A Combined Definition for a Preliminary Consensus. International Journal of Nutrition and Food Sciences, 3(3), 174. https://doi.org/10.11648/j.ijnfs.20140303.16

Hamaki, T., Suzuki, M., Fudou, R., Jojima, Y., Kajiura, T., Tabuchi, A., Sen, K., & Shibai, H. (2005). Isolation of novel bacteria and actinomycetes using soil-extract agar medium. Journal of Bioscience and Bioengineering, 99(5), 485–492. https://doi.org/10.1263/jbb.99.485

Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105(12), 1422–1432. https://doi.org/10.1017/s0953756201004725

Hayes, M., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2007). Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnology Journal, 2(4), 435–449. https://doi.org/10.1002/biot.200700045

Jiao, P., Swenson, D. C., Gloer, J. B., Campbell, J., & Shearer, C. A. (2006). Decaspirones A−E, Bioactive Spirodioxynaphthalenes from the Freshwater Aquatic FungusDecaisnella thyridioides. Journal of Natural Products, 69(12), 1667–1671. https://doi.org/10.1021/np060385k

Joshi, R. D., & Kulkarni, N. S. (2016). Optimization studies on L-asparaginase production from endophytic Bacteria. International Journal of Applied Research, 2(3), 624–629. https://www.allresearchjournal.com/archives/?year=2016&vol=2&issue=3&part=K&ArticleId=1707

Jung, H. J., Kim, Y., Lee, H. B., & Kwon, H. J. (2014). Antiangiogenic Activity of the Lipophilic Antimicrobial Peptides from an Endophytic Bacterial Strain Isolated from Red Pepper Leaf. Molecules and Cells, 38(3), 273–278. https://doi.org/10.14348/molcells.2015.2320

Kai, H., Yamashita, M., Takase, S., Hashimoto, M., Muramatsu, H., Nakamura, I., Yoshikawa, K., Ezaki, M., Nitta, K., Watanabe, M., Inamura, N., & Fujie, A. (2013). KB425796-A, a novel antifungal antibiotic produced by Paenibacillus sp. 530603. The Journal of Antibiotics, 66(8), 465–471. https://doi.org/10.1038/ja.2013.63

Kalsoom, M., Ur Rehman, F., Shafique, T., Junaid, S., Khalid, N., Adnan, M., Zafar, I., Abdullah Tariq, M., Raza, M. A., Zahra, A., & Ali, H. (2020). Biological importance of microbes in agriculture, food and pharmaceutical industry: a review. Innovare Journal of Life Sciences, 1–4. https://doi.org/10.22159/ijls.2020.v8i6.39845

Kamiloglu, S., Tomas, M., Ozdal, T., Yolci-Omeroglu, P., & Capanoglu, E. (2021). Bioactive component analysis. Innovative Food Analysis, 41–65. https://doi.org/10.1016/b978-0-12-819493-5.00002-9

Kanasaki, R., Abe, F., Kobayashi, M., Katsuoka, M., Hashimoto, M., Takase, S., Tsurumi, Y., Fujie, A., Hino, M., Hashimoto, S., & Hori, Y. (2006). FR220897 and FR220899, Novel Antifungal Lipopeptides from Coleophoma empetri No. 14573. The Journal of Antibiotics, 59(3), 149–157. https://doi.org/10.1038/ja.2006.22

Kanoh, K., Okada, A., Adachi, K., Imagawa, H., Nishizawa, M., Matsuda, S., Shizuri, Y., & Utsumi, R. (2008). Ascochytatin, a Novel Bioactive Spirodioxynaphthalene Metabolite Produced by the Marine-derived Fungus, Ascochyta sp. NGB4. The Journal of Antibiotics, 61(3), 142–148. https://doi.org/10.1038/ja.2008.123

Kaur, G., Hollingshead, M., Holbeck, S., Schauer-Vukašinovic, V., Camalier, Richard F., Dömling, A., & Agarwal, S. (2006). Biological evaluation of tubulysin A: a potential anticancer and antiangiogenic natural product. Biochemical Journal, 396(2), 235–242. https://doi.org/10.1042/bj20051735

Kharatyan, S. G. (1978). Microbes as Food for Humans. Annual Review of Microbiology, 32(1), 301–327. https://doi.org/10.1146/annurev.mi.32.100178.001505

Komal, A. (2021). Biologically active peptides from marine proteobacteria: Discussion article. Open Journal of Bacteriology, 005-012. https://doi.org/10.17352/ojb.000018

Lai, D., Wang, A., Cao, Y., Zhou, K., Mao, Z., Dong, X., Tian, J., Xu, D., Dai, J., Peng, Y., Zhou, L., & Liu, Y. (2016). Bioactive Dibenzo-α-pyrone Derivatives from the Endophytic Fungus Rhizopycnis vagum Nitaf22. Journal of Natural Products, 79(8), 2022–2031. https://doi.org/10.1021/acs.jnatprod.6b00327

Laport, M. S., Santos, O. C. S., & Muricy, G. (2009). Marine sponges: potential sources of new antimicrobial drugs. Current Pharmaceutical Biotechnology, 10(1), 86–105. https://doi.org/10.2174/138920109787048625

Li, H., Cao, K., Cong, P., Liu, Y., Cui, H., & Xue, C. (2018). Structure characterization and antitumor activity of the extracellular polysaccharide from the marine fungus Hansfordia sinuosae. Carbohydrate Polymers, 190, 87–94. https://doi.org/10.1016/j.carbpol.2018.02.077

Li, W., Yang, X., Yang, Y., Zhao, L., Xu, L., & Ding, Z. (2014). A new anthracycline from endophytic Streptomyces sp. YIM66403. The Journal of Antibiotics, 68(3), 216–219. https://doi.org/10.1038/ja.2014.128

Ma, M., Ge, H., Yi, W., Wu, B., & Zhang, Z. (2020). Bioactive drimane sesquiterpenoids and isocoumarins from the marine-derived fungus Penicillium minioluteum ZZ1657. Tetrahedron Letters, 61(7), 151504. https://doi.org/10.1016/j.tetlet.2019.151504

Mahdinia, E., Demirci, A., & Berenjian, A. (2016). Production and application of menaquinone-7 (vitamin K2): a new perspective. World Journal of Microbiology and Biotechnology, 33(1). https://doi.org/10.1007/s11274-016-2169-2

Maskey, R. P., Li, F. C., Qin, S., Fiebig, H.H., & Laatsch, H. (2003). Chandrananimycins A-C: Production of Novel Anticancer Antibiotics from a Marine Actinomadura sp. Isolate M048 by Variation of Medium Composition and Growth Conditions. The Journal of Antibiotics, 56(7), 622–629. https://doi.org/10.7164/antibiotics.56.622

Mayer, A. M. S., & Hamann, M. T. (2002). Marine pharmacology in 1999: compounds with antibacterial, anticoagulant, antifungal, anthelmintic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous systems, and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 132(3), 315–339. https://doi.org/10.1016/s1532-0456(02)00094-7

Newman, D. J., & Cragg, G. M. (2004). Advanced Preclinical and Clinical Trials of Natural Products and Related Compounds from Marine Sources. Current Medicinal Chemistry, 11(13), 1693–1713. https://doi.org/10.2174/0929867043364982

Núñez, L. E., Nybo, S. E., González-Sabín, J., Pérez, M., Menéndez, N., Braña, A. F., He, M., Morís, F., Salas, J. A., Rohr, J., & Méndez, C. (2012). A novel mithramycin analogue with high antitumor activity and less toxicity generated by combinatorial biosynthesis. Journal of Medicinal Chemistry, 55(12), 5813–5825. https://doi.org/10.1021/jm300234t

Oku, N., Kawabata, K., Adachi, K., Katsuta, A., & Shizuri, Y. (2008). Unnarmicins A and C, new antibacterial depsipeptides produced by marine bacterium Photobacterium sp. MBIC06485. The Journal of Antibiotics, 61(1), 11–17. https://doi.org/10.1038/ja.2008.103

Patridge, E., Gareiss, P., Kinch, M. S., & Hoyer, D. (2016). An analysis of FDA-approved drugs: natural products and their derivatives. Drug Discovery Today, 21(2), 204–207. https://doi.org/10.1016/j.drudis.2015.01.009

Petruk, G., Roxo, M., De Lise, F., Mensitieri, F., Notomista, E., Wink, M., Izzo, V., & Monti, D. M. (2018). The marine Gram-negative bacterium Novosphingobium sp. PP1Y as a potential source of novel metabolites with antioxidant activity. Biotechnology Letters, 41(2), 273–281. https://doi.org/10.1007/s10529-018-02636-4

Pettit, G. R., Knight, J. C., Herald, D. L., Pettit, R. K., Hogan, F., Mukku, V. J. R. V., Hamblin, J. S., Dodson, M. J., & Chapuis, J.-C. (2009). Antineoplastic Agents. 570. Isolation and Structure Elucidation of Bacillistatins 1 and 2 from a MarineBacillus silvestris†,‡. Journal of Natural Products, 72(3), 366–371. https://doi.org/10.1021/np800603u

Romano, G., Costantini, M., Sansone, C., Lauritano, C., Ruocco, N., & Ianora, A. (2017). Marine microorganisms as a promising and sustainable source of bioactive molecules. Marine Environmental Research, 128, 58–69. https://doi.org/10.1016/j.marenvres.2016.05.002

Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Rodríguez-Sanoja, R., Sánchez, S., & Langley, E. (2010). Production of microbial secondary metabolites: regulation by the carbon source. Critical Reviews in Microbiology, 36(2), 146–167. https://doi.org/10.3109/10408410903489576

Shanahan, F. (2000). IMMUNOLOGY: Therapeutic Manipulation of Gut Flora. Science, 289(5483), 1311–1312. https://doi.org/10.1126/science.289.5483.1311

Silvers, M. A., Pakhomova, S., Neau, D. B., Silvers, W. C., Anzalone, N., Taylor, C. M., & Waldrop, G. L. (2016). Crystal Structure of Carboxyltransferase from Staphylococcus aureus Bound to the Antibacterial Agent Moiramide B. Biochemistry, 55(33), 4666–4674. https://doi.org/10.1021/acs.biochem.6b00641

Singh, M., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0942-z

Singh, B.P., Rated, M.E., Rodriguez-Cuoto, S., Polizeli, M.dL.T.dM., & Li, W.-J. (2019). Editorial: Microbial secondary metabolites: Recent developments and technological challenges. Frontiers in Microbiology, 10: 914. doi:10.3389/fmicb.2019.00914

Strohl, W. R. (1997). Biotechnology of antibiotics. In Open WorldCat. M. Dekker. https://www.worldcat.org/title/biotechnology-of-antibiotics/oclc/36923119

Taechowisan, T., Chanaphat, S., Ruensamran, W., & S. Phutdhawong, W. (2012). Anti-Inflammatory Effect of 3-Methylcarbazoles on RAW 264.7 Cells Stimulated with LPS, Polyinosinic-Polycytidylic Acid and Pam3CSK. Advances in Microbiology, 02(02), 98–103. https://doi.org/10.4236/aim.2012.22013

Trischman, J. A., Jensen, P. R., & Fenical, W. (1994). Halobacillin: A cytotoxic cyclic acylpeptide of the iturin class produced by a marine Bacillus. Tetrahedron Letters, 35(31), 5571–5574. https://doi.org/10.1016/s0040-4039(00)77249-2

Venegas-Ortega, M. G., Flores-Gallegos, A. C., Martínez-Hernández, J. L., Aguilar, C. N., & Nevárez-Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455

Vitorino, L.C., & Bessa, L.A. (2017). Technological Microbiology: Development and Applications. Frontiers in Microbiology, 8, 827. doi:10.3389/fmicb.2017.00827  

Wang, S.-X., Zhao, R.-L., Guo, C., Chen, B.-S., Dai, H.-Q., Liu, G.-Q., & Liu, H.-W. (2020). New meroterpenoid compounds from the culture of mushroom Panus lecomtei. Chinese Journal of Natural Medicines, 18(4), 268–272. https://doi.org/10.1016/s1875-5364(20)30033-9

Xiang, H., Sun-Waterhouse, D., Waterhouse, G.I.N.., Cui, C., & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203-243. https://doi.org/10.1016/j.fshw.2019.08.003

Zhang, D., Shu, C., Lian, X., & Zhang, Z. (2018). New Antibacterial Bagremycins F and G from the Marine-Derived Streptomyces sp. ZZ745. Marine Drugs, 16(9), 330. https://doi.org/10.3390/md16090330

Zhao, M., Ruan, Q., Pan, W., Tang, Y., Zhao, Z., & Cui, H. (2020). New polyketides and diterpenoid derivatives from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Fitoterapia, 143, 104561. https://doi.org/10.1016/j.fitote.2020.104561

PDF
Supplementary Material
Abstract
Export Citation

View Dimensions


View Plumx


View Altmetric




Save
0
Citation
633
View

Share