Pro-angiogenesis factor in renal failure
Vascular endothelial growth factor
Vascular endothelial growth factor (VEGF) is an endothelial-specific growth factor that promotes endothelial cell proliferation, differentiation and survival, mediates endothelium-dependent vasodilatation, induces microvascular hyper-permeability and participates in interstitial matrix remodeling (Carmeliet 2003). The role of VEGF is unknown in normal kidney physiology, however VEGF and its receptor are up-regulated in type 1 and 2 diabetes. Also inhibition of VEGF and VEGFR expression ameliorate diabetic kidney condition (Schrijvers et al. 2004). VEGF plays an important role in maintaining the glomerular capillary struc ture, and in the repair process following injuries to the glomerular endothelial cells and peritubular capillaries (PTC). Physiological levels of VEGF-A are also required for maintenance of glomerular filtration (Khamaisi et al. 2003).
Angiopoietins
Reduction in circulating levels of Ang-1, and elevation of Ang-2 levels in patients with CKD displays moderate to severe renal dysfunction. In a mouse model of folic acid-induced nephrotoxicity, Ang-1 was detected in renal arterial walls and in injured cortical distal tubules. In a mouse anti-glomerulonephritis model, the glomerular level of Ang-1 was reduced and Ang-2 was increased, in association with glomerular endothelial cell apoptosis. In a mouse model of unilateral ureteral obstruction, reduction in renal Ang-1 level was observed. This research data suggest that Ang-1 supplementation can have variable outcomes on renal injuries, depending on the disease model (Futrakul and Futrakul 2011; Woolf et al. 2009).
Other angiogenic factors
In a mouse model of ischemia-reperfusion injury (IRI), renal expression of Ephrin type-A receptor 2 (EphA2) mRNA was markedly increased and EphA2 protein was detected in distal tubules. The interactions between EphA2 and its Ephrin ligands may be involved in cytoskeletal repair of tubular epithelial cells in renal IRI. In the early stages (1 or 2 weeks) of the rat remnant kidney model, renal levels of Placental Growth Factor (PlGF) were elevated in association with enhanced angiogenic response. Whether VEGF-A or PlGF play principal roles in the angiogenic repair process after injuries induced by renal mass ablation needs further investigation.