MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
REVIEWS   (Open Access)

Bioactive Properties of Spirulina: A Review

Amir Ali Anvara, Bahareh Nowruzi*b

+ Author Affiliations

Microbial Bioactives 4(1) 134-142 https://doi.org/10.25163/microbbioacts.412117B0719110521

Revised: 11 May 2021  Published: 19 May 2021 

Abstract

Spirulina is a single-cell protein rich in all essential nutrients and vitamins and can be used to produce functional food. In fact, one of the most important problems in the food industry is the use of synthetic food additives that increase the risk of cancer. Therefore, efforts are being made around the world today to isolate new and safe antioxidants from natural sources. Among these, the natural products of cyanobacteria are an important source of new drug compounds. Natural bioactive products not only have medicinal value themselves but are also used as building models to create synthetic analogs. The chemical composition of Spirulina includes protein (70-55%), carbohydrates (25-25%), essential fatty acids (18%), vitamins, minerals, and pigments such as carotene, chlorophyll A and phycocyanin. Obviously, the introduction of valuable properties of cyanobacteria Spirulina can be a suitable substitute for many antimicrobial compounds and synthetic antioxidants that not only pose no risk to the consumer but can also improve consumer health. In this review, we have discussed the important nutrient, bioactive properties, and immunological applications of Spirulina. The current research suggests that spirulina supplementations have been accepted by global accreditation as a safe nutritional and dietary supplement.

Keywords: Dietary supplements; Food; Safe nutrition; Spirulina.

References

Abd El-Baky, H. H., & El-Baroty, G. S. (2020). Spirulina maxima L-asparaginase: Immobilization, Antiviral and Antiproliferation Activities. Recent Patents on Biotechnology, 14(2), 154–163. https://doi.org/10.2174/1872208313666191114151344

Abdel-Daim, M. M., Ahmed, A., Ijaz, H., Abushouk, A. I., Ahmed, H., Negida, A., … Bungau, S. G. (2019). Influence of Spirulina platensis and ascorbic acid on amikacin-induced nephrotoxicity in rabbits. Environmental Science and Pollution Research, 26(8), 8080–8086. https://doi.org/10.1007/s11356-019-04249-4

Aiello, G., Li, Y., Boschin, G., Bollati, C., Arnoldi, A., & Lammi, C. (2019). Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. Journal of Functional Foods, 63, 103592. https://doi.org/10.1016/j.jff.2019.103592

Ali, S. K., & Saleh, A. M. (2012). Spirulina - An overview. International Journal of Pharmacy and Pharmaceutical Sciences. https://doi.org/10.1201/9780203025901.ch14

Aly, F. M., Kotb, A. M., & Hammad, S. (2018). Effects of Spirulina platensis on DNA damage and chromosomal aberration against cadmium chloride-induced genotoxicity in rats. Environmental Science and Pollution Research, 25(11), 10829–10836. https://doi.org/10.1007/s11356-018-1329-3

Andrade, L. M. (2018). Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ Food Processing & Technology, 6(1). https://doi.org/10.15406/mojfpt.2018.06.00144

Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056–1063. https://doi.org/10.1016/j.foodchem.2015.08.133

Braga, V. da S., Mastrantonio, D. J. da S., Costa, J. A. V., & Morais, M. G. de. (2018). Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Bioresource Technology, 269, 221–226. https://doi.org/10.1016/j.biortech.2018.08.105

Chen, T., & Wong, Y.-S. (2008). In Vitro Antioxidant and Antiproliferative Activities of Selenium-Containing Phycocyanin from Selenium-Enriched Spirulina platensis. Journal of Agricultural and Food Chemistry, 56(12), 4352–4358. https://doi.org/10.1021/jf073399k

Chen, T., Yang, Tang, Zhong, Bai, Zhang, … Zheng. (2012). Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. International Journal of Nanomedicine, 835. https://doi.org/10.2147/IJN.S28278

Chia, S. R., Chew, K. W., Show, P. L., Xia, A., Ho, S.-H., & Lim, J. W. (2019). Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresource Technology, 289, 121727. https://doi.org/10.1016/j.biortech.2019.121727

Costa, J. A. V., Freitas, B. C. B., Rosa, G. M., Moraes, L., Morais, M. G., & Mitchell, B. G. (2019). Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology, 292, 121946. https://doi.org/10.1016/j.biortech.2019.121946

DiNicolantonio, J. J., Bhat, A. G., & OKeefe, J. (2020). Effects of Spirulina on weight loss and blood lipids: a review. Open Heart, 7(1), e001003. https://doi.org/10.1136/openhrt-2018-001003

Donato, N. R., Queiroz, A. J. D. M., Feitosa de Figueirêdo, R. M., Feitosa, R. M., Moreira, I. D. S., & Lima, J. F. de. (2019). Production of Cookies Enriched With Spirulina platensis Biomass. Journal of Agricultural Studies, 7(2), 323. https://doi.org/10.5296/jas.v7i4.15483

El-Sayed, E.-S., Hikal, M., Abo El- Khair, B., El-Ghobashy, R., & El-Assar, A. (2018). Hypoglycemic and Hypolipidemic Effects of Spirulina Platensis, Phycocyanin, Phycocyanopeptide and Phycocyanobilin on Male Diabetic Rats. Arab Universities Journal of Agricultural Sciences, 26(3), 1121–1134. https://doi.org/10.21608/ajs.2018.28365

Ghattas, T. A., Dawoud, E. N., Mahrous, A. F., & Elgabry, E. A. (2019). Effect of Spirulina platensis supplementation on growth, some biochemical and immunological parameters in suckling calves. Egyptian Veterinary Medical Association, 79, 443–460.

Golmakani, M.-T., Soleimanian-Zad, S., Alavi, N., Nazari, E., & Eskandari, M. H. (2019). Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. Journal of Applied Phycology, 31(2), 1085–1094. https://doi.org/10.1007/s10811-018-1611-2

Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The True Value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109–4115. https://doi.org/10.1021/acs.jafc.9b08251

Iwata, K., Inayama, T., & Kato, T. (1990). Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. Journal of Nutritional Science and Vitaminology, 36(2), 165–171. https://doi.org/10.3177/jnsv.36.165

Kameshwari, V., Selvaraj, S., & Sundaramoorthy, S. (2020). Single Cell Protein Spirulina-A Nutrient Treasure. Research Journal of Pharmacology and Pharmacodynamics, 12(2), 49. https://doi.org/10.5958/2321-5836.2020.00010.5

Kawanishi, Y., Tominaga, A., Okuyama, H., Fukuoka, S., Taguchi, T., Kusumoto, Y., … Shimizu, K. (2013). Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4. Microbiology and Immunology, 57(1), 63–73. https://doi.org/10.1111/1348-0421.12001

Li, B., Zhang, X., Gao, M., & Chu, X. (2005). Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomedicine & Pharmacotherapy, 59(10), 551–560. https://doi.org/10.1016/j.biopha.2005.06.012

Li, T.-T., Liu, Y.-Y., Wan, X.-Z., Huang, Z.-R., Liu, B., & Zhao, C. (2018). Regulatory Efficacy of the Polyunsaturated Fatty Acids from Microalgae Spirulina platensis on Lipid Metabolism and Gut Microbiota in High-Fat Diet Rats. International Journal of Molecular Sciences, 19(10), 3075. https://doi.org/10.3390/ijms19103075

Li, T.-T., Tong, A.-J., Liu, Y.-Y., Huang, Z.-R., Wan, X.-Z., Pan, Y.-Y., … Zhao, C. (2019). Polyunsaturated fatty acids from microalgae Spirulina platensis modulates lipid metabolism disorders and gut microbiota in high-fat diet rats. Food and Chemical Toxicology, 131, 110558. https://doi.org/10.1016/j.fct.2019.06.005

Liu, Y., Xu, L., Cheng, N., Lin, L., & Zhang, C. (2000). Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. Journal of Applied Phycology. https://doi.org/10.1023/A:1008132210772

Lupatini, A. L., Colla, L. M., Canan, C., & Colla, E. (2017). Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3), 724–732. https://doi.org/10.1002/jsfa.7987

Mani, U., Sadliwala, A., Iyer, U., & Parikh, P. (2000). The Effect of Spirulina Supplementation on Blood Haemoglobin Levels of Anaemic Adult Girls. Journal of Food Science and Technology.

Nowruzi, B., Haghighat, S., Fahimi, H., & Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5–12. https://doi.org/10.1111/jphs.12202

Nowruzi, B., Sarvari, G., & Blanco, S. (2020a). Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine (pp. 441–453). Elsevier. https://doi.org/10.1016/B978-0-12-818305-2.00028-0

Nowruzi, B., Sarvari, G., & Blanco, S. (2020b). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. https://doi.org/10.1016/j.algal.2020.101959

Ramakrishnan, R. (2013). Anticancer properties of blue green algae Spirulina platensis – A Review. International Journal of Medicine and Pharmaceutical Sciences (IJMPS).

Reddy, M. C., Subhashini, J., Mahipal, S. V. ., Bhat, V. B., Srinivas Reddy, P., Kiranmai, G., … Reddanna, P. (2003). C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 304(2), 385–392. https://doi.org/10.1016/S0006-291X(03)00586-2

Rosario, J. C., & Josephine, R. M. (2015). Mineral profile of edible algae Spirulina platensis. Int J Curr Microbiol App Sci, 4(1), 478–483.

Santos, T. D., Freitas, B. C. B. de, Moreira, J. B., Zanfonato, K., & Costa, J. A. V. (2016). Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innovative Food Science & Emerging Technologies, 37, 216–220. https://doi.org/10.1016/j.ifset.2016.07.016

Schwartz, J., & Shklar, G. (1987). Regression of experimental hamster cancer by beta carotene and algae extracts. Journal of Oral and Maxillofacial Surgery, 45(6), 510–515. https://doi.org/10.1016/S0278-2391(87)80011-3

Setyaningsih, I., Mahmudah, P., Trilaksani, W., Tarman, K., & Santoso, J. (2020). Spirulina biscuit formulation with coconut cream substitution and its shelf life estimation. IOP Conference Series: Earth and Environmental Science, 414, 012022. https://doi.org/10.1088/1755-1315/414/1/012022

Sinha, S., Patro, N., & Patro, I. K. (2018). Maternal Protein Malnutrition: Current and Future Perspectives of Spirulina Supplementation in Neuroprotection. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00966

Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171. https://doi.org/10.1016/j.tifs.2017.09.010

Wan, D., Wu, Q., & Kuca, K. (2016). Spirulina. In Nutraceuticals (pp. 569–583). Cambridge, MA, USA: Academic Press.

Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application of Spirulina platensis on Ice Cream and Soft Cheese with Respect to Their Nutritional and Sensory Perspectives. Jurnal Teknologi, 78(4–2). https://doi.org/10.11113/jt.v78.8216

Wu, H.-L., Wang, G.-H., Xiang, W.-Z., Li, T., & He, H. (2016). Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349–2362. https://doi.org/10.1080/10942912.2015.1038564

Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuca, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5

Yousefi, R., Mottaghi, A., & Saidpour, A. (2018). Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complementary Therapies in Medicine, 40, 106–112. https://doi.org/10.1016/j.ctim.2018.08.003

Zeinalian, R., Farhangi, M. A., Shariat, A., & Saghafi-Asl, M. (2017). The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complementary and Alternative Medicine, 17(1), 225. https://doi.org/10.1186/s12906-017-1670-y

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



110
Save
0
Citation
1745
View
12
Share