Abd El-Baky, H. H., & El-Baroty, G. S. (2020). Spirulina maxima L-asparaginase: Immobilization, Antiviral and Antiproliferation Activities. Recent Patents on Biotechnology, 14(2), 154–163. https://doi.org/10.2174/1872208313666191114151344
Abdel-Daim, M. M., Ahmed, A., Ijaz, H., Abushouk, A. I., Ahmed, H., Negida, A., … Bungau, S. G. (2019). Influence of Spirulina platensis and ascorbic acid on amikacin-induced nephrotoxicity in rabbits. Environmental Science and Pollution Research, 26(8), 8080–8086. https://doi.org/10.1007/s11356-019-04249-4
Aiello, G., Li, Y., Boschin, G., Bollati, C., Arnoldi, A., & Lammi, C. (2019). Chemical and biological characterization of spirulina protein hydrolysates: Focus on ACE and DPP-IV activities modulation. Journal of Functional Foods, 63, 103592. https://doi.org/10.1016/j.jff.2019.103592
Ali, S. K., & Saleh, A. M. (2012). Spirulina - An overview. International Journal of Pharmacy and Pharmaceutical Sciences. https://doi.org/10.1201/9780203025901.ch14
Aly, F. M., Kotb, A. M., & Hammad, S. (2018). Effects of Spirulina platensis on DNA damage and chromosomal aberration against cadmium chloride-induced genotoxicity in rats. Environmental Science and Pollution Research, 25(11), 10829–10836. https://doi.org/10.1007/s11356-018-1329-3
Andrade, L. M. (2018). Chlorella and Spirulina Microalgae as Sources of Functional Foods, Nutraceuticals, and Food Supplements; an Overview. MOJ Food Processing & Technology, 6(1). https://doi.org/10.15406/mojfpt.2018.06.00144
Benelhadj, S., Gharsallaoui, A., Degraeve, P., Attia, H., & Ghorbel, D. (2016). Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chemistry, 194, 1056–1063. https://doi.org/10.1016/j.foodchem.2015.08.133
Braga, V. da S., Mastrantonio, D. J. da S., Costa, J. A. V., & Morais, M. G. de. (2018). Cultivation strategy to stimulate high carbohydrate content in Spirulina biomass. Bioresource Technology, 269, 221–226. https://doi.org/10.1016/j.biortech.2018.08.105
Chen, T., & Wong, Y.-S. (2008). In Vitro Antioxidant and Antiproliferative Activities of Selenium-Containing Phycocyanin from Selenium-Enriched Spirulina platensis. Journal of Agricultural and Food Chemistry, 56(12), 4352–4358. https://doi.org/10.1021/jf073399k
Chen, T., Yang, Tang, Zhong, Bai, Zhang, … Zheng. (2012). Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. International Journal of Nanomedicine, 835. https://doi.org/10.2147/IJN.S28278
Chia, S. R., Chew, K. W., Show, P. L., Xia, A., Ho, S.-H., & Lim, J. W. (2019). Spirulina platensis based biorefinery for the production of value-added products for food and pharmaceutical applications. Bioresource Technology, 289, 121727. https://doi.org/10.1016/j.biortech.2019.121727
Costa, J. A. V., Freitas, B. C. B., Rosa, G. M., Moraes, L., Morais, M. G., & Mitchell, B. G. (2019). Operational and economic aspects of Spirulina-based biorefinery. Bioresource Technology, 292, 121946. https://doi.org/10.1016/j.biortech.2019.121946
DiNicolantonio, J. J., Bhat, A. G., & OKeefe, J. (2020). Effects of Spirulina on weight loss and blood lipids: a review. Open Heart, 7(1), e001003. https://doi.org/10.1136/openhrt-2018-001003
Donato, N. R., Queiroz, A. J. D. M., Feitosa de Figueirêdo, R. M., Feitosa, R. M., Moreira, I. D. S., & Lima, J. F. de. (2019). Production of Cookies Enriched With Spirulina platensis Biomass. Journal of Agricultural Studies, 7(2), 323. https://doi.org/10.5296/jas.v7i4.15483
El-Sayed, E.-S., Hikal, M., Abo El- Khair, B., El-Ghobashy, R., & El-Assar, A. (2018). Hypoglycemic and Hypolipidemic Effects of Spirulina Platensis, Phycocyanin, Phycocyanopeptide and Phycocyanobilin on Male Diabetic Rats. Arab Universities Journal of Agricultural Sciences, 26(3), 1121–1134. https://doi.org/10.21608/ajs.2018.28365
Ghattas, T. A., Dawoud, E. N., Mahrous, A. F., & Elgabry, E. A. (2019). Effect of Spirulina platensis supplementation on growth, some biochemical and immunological parameters in suckling calves. Egyptian Veterinary Medical Association, 79, 443–460.
Golmakani, M.-T., Soleimanian-Zad, S., Alavi, N., Nazari, E., & Eskandari, M. H. (2019). Effect of Spirulina (Arthrospira platensis) powder on probiotic bacteriologically acidified feta-type cheese. Journal of Applied Phycology, 31(2), 1085–1094. https://doi.org/10.1007/s10811-018-1611-2
Grosshagauer, S., Kraemer, K., & Somoza, V. (2020). The True Value of Spirulina. Journal of Agricultural and Food Chemistry, 68(14), 4109–4115. https://doi.org/10.1021/acs.jafc.9b08251
Iwata, K., Inayama, T., & Kato, T. (1990). Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. Journal of Nutritional Science and Vitaminology, 36(2), 165–171. https://doi.org/10.3177/jnsv.36.165
Kameshwari, V., Selvaraj, S., & Sundaramoorthy, S. (2020). Single Cell Protein Spirulina-A Nutrient Treasure. Research Journal of Pharmacology and Pharmacodynamics, 12(2), 49. https://doi.org/10.5958/2321-5836.2020.00010.5
Kawanishi, Y., Tominaga, A., Okuyama, H., Fukuoka, S., Taguchi, T., Kusumoto, Y., … Shimizu, K. (2013). Regulatory effects of Spirulina complex polysaccharides on growth of murine RSV-M glioma cells through Toll-like receptor 4. Microbiology and Immunology, 57(1), 63–73. https://doi.org/10.1111/1348-0421.12001
Li, B., Zhang, X., Gao, M., & Chu, X. (2005). Effects of CD59 on antitumoral activities of phycocyanin from Spirulina platensis. Biomedicine & Pharmacotherapy, 59(10), 551–560. https://doi.org/10.1016/j.biopha.2005.06.012
Li, T.-T., Liu, Y.-Y., Wan, X.-Z., Huang, Z.-R., Liu, B., & Zhao, C. (2018). Regulatory Efficacy of the Polyunsaturated Fatty Acids from Microalgae Spirulina platensis on Lipid Metabolism and Gut Microbiota in High-Fat Diet Rats. International Journal of Molecular Sciences, 19(10), 3075. https://doi.org/10.3390/ijms19103075
Li, T.-T., Tong, A.-J., Liu, Y.-Y., Huang, Z.-R., Wan, X.-Z., Pan, Y.-Y., … Zhao, C. (2019). Polyunsaturated fatty acids from microalgae Spirulina platensis modulates lipid metabolism disorders and gut microbiota in high-fat diet rats. Food and Chemical Toxicology, 131, 110558. https://doi.org/10.1016/j.fct.2019.06.005
Liu, Y., Xu, L., Cheng, N., Lin, L., & Zhang, C. (2000). Inhibitory effect of phycocyanin from Spirulina platensis on the growth of human leukemia K562 cells. Journal of Applied Phycology. https://doi.org/10.1023/A:1008132210772
Lupatini, A. L., Colla, L. M., Canan, C., & Colla, E. (2017). Potential application of microalga Spirulina platensis as a protein source. Journal of the Science of Food and Agriculture, 97(3), 724–732. https://doi.org/10.1002/jsfa.7987
Mani, U., Sadliwala, A., Iyer, U., & Parikh, P. (2000). The Effect of Spirulina Supplementation on Blood Haemoglobin Levels of Anaemic Adult Girls. Journal of Food Science and Technology.
Nowruzi, B., Haghighat, S., Fahimi, H., & Mohammadi, E. (2018). Nostoc cyanobacteria species: a new and rich source of novel bioactive compounds with pharmaceutical potential. Journal of Pharmaceutical Health Services Research, 9(1), 5–12. https://doi.org/10.1111/jphs.12202
Nowruzi, B., Sarvari, G., & Blanco, S. (2020a). Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine (pp. 441–453). Elsevier. https://doi.org/10.1016/B978-0-12-818305-2.00028-0
Nowruzi, B., Sarvari, G., & Blanco, S. (2020b). The cosmetic application of cyanobacterial secondary metabolites. Algal Research, 49, 101959. https://doi.org/10.1016/j.algal.2020.101959
Ramakrishnan, R. (2013). Anticancer properties of blue green algae Spirulina platensis – A Review. International Journal of Medicine and Pharmaceutical Sciences (IJMPS).
Reddy, M. C., Subhashini, J., Mahipal, S. V. ., Bhat, V. B., Srinivas Reddy, P., Kiranmai, G., … Reddanna, P. (2003). C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 304(2), 385–392. https://doi.org/10.1016/S0006-291X(03)00586-2
Rosario, J. C., & Josephine, R. M. (2015). Mineral profile of edible algae Spirulina platensis. Int J Curr Microbiol App Sci, 4(1), 478–483.
Santos, T. D., Freitas, B. C. B. de, Moreira, J. B., Zanfonato, K., & Costa, J. A. V. (2016). Development of powdered food with the addition of Spirulina for food supplementation of the elderly population. Innovative Food Science & Emerging Technologies, 37, 216–220. https://doi.org/10.1016/j.ifset.2016.07.016
Schwartz, J., & Shklar, G. (1987). Regression of experimental hamster cancer by beta carotene and algae extracts. Journal of Oral and Maxillofacial Surgery, 45(6), 510–515. https://doi.org/10.1016/S0278-2391(87)80011-3
Setyaningsih, I., Mahmudah, P., Trilaksani, W., Tarman, K., & Santoso, J. (2020). Spirulina biscuit formulation with coconut cream substitution and its shelf life estimation. IOP Conference Series: Earth and Environmental Science, 414, 012022. https://doi.org/10.1088/1755-1315/414/1/012022
Sinha, S., Patro, N., & Patro, I. K. (2018). Maternal Protein Malnutrition: Current and Future Perspectives of Spirulina Supplementation in Neuroprotection. Frontiers in Neuroscience, 12. https://doi.org/10.3389/fnins.2018.00966
Soni, R. A., Sudhakar, K., & Rana, R. S. (2017). Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology, 69, 157–171. https://doi.org/10.1016/j.tifs.2017.09.010
Wan, D., Wu, Q., & Kuca, K. (2016). Spirulina. In Nutraceuticals (pp. 569–583). Cambridge, MA, USA: Academic Press.
Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application of Spirulina platensis on Ice Cream and Soft Cheese with Respect to Their Nutritional and Sensory Perspectives. Jurnal Teknologi, 78(4–2). https://doi.org/10.11113/jt.v78.8216
Wu, H.-L., Wang, G.-H., Xiang, W.-Z., Li, T., & He, H. (2016). Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349–2362. https://doi.org/10.1080/10942912.2015.1038564
Wu, Q., Liu, L., Miron, A., Klímová, B., Wan, D., & Kuca, K. (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of Toxicology, 90(8), 1817–1840. https://doi.org/10.1007/s00204-016-1744-5
Yousefi, R., Mottaghi, A., & Saidpour, A. (2018). Spirulina platensis effectively ameliorates anthropometric measurements and obesity-related metabolic disorders in obese or overweight healthy individuals: A randomized controlled trial. Complementary Therapies in Medicine, 40, 106–112. https://doi.org/10.1016/j.ctim.2018.08.003
Zeinalian, R., Farhangi, M. A., Shariat, A., & Saghafi-Asl, M. (2017). The effects of Spirulina Platensis on anthropometric indices, appetite, lipid profile and serum vascular endothelial growth factor (VEGF) in obese individuals: a randomized double blinded placebo controlled trial. BMC Complementary and Alternative Medicine, 17(1), 225. https://doi.org/10.1186/s12906-017-1670-y