Unintended Genetic Consequences of mRNA Vaccines: Evaluating Risks of Transcriptional Disruption, HLA Alteration, and Genomic Integration
Md Jabir Rashid1*, Md Sakil Amin1, Tufael2, Azizur Rahman3
Journal of Precision Biosciences 7(1) 1-8 https://doi.org/10.25163/biosciences.7110287
Submitted: 06 January 2025 Revised: 08 March 2025 Published: 12 March 2025
This study demonstrated potential genetic risks of mRNA vaccines, emphasizing the need for advanced molecular surveillance and ethical vaccine development.
Abstract
The rapid advancement of mRNA technology, particularly in COVID-19 vaccines, has sparked widespread debate regarding its safety and long-term genetic implications. This study critically examines the potential risks associated with mRNA vaccines, specifically their ability to induce rogue transcriptional events that may lead to unintended genetic modifications. Contrary to initial claims that mRNA degrades harmlessly, emerging evidence suggests that synthetic sequences may embed within the human exome, disrupting essential genetic processes. The primary concern lies in the potential scrambling of the Human Leukocyte Antigen (HLA) gene complex, which could trigger autoimmune disorders and long-term genetic instability. Furthermore, the spike proteins produced by mRNA vaccines have been implicated in oxidative stress, DNA damage, and impaired cellular repair mechanisms. This study underscores the urgent need for high-resolution molecular surveillance to detect and mitigate these risks before they become permanent fixtures in the human genome. Collaborative efforts from institutions such as Neo7Bioscience, the McCullough Foundation, and the University of North Texas are pioneering RNA detection methods to assess and counteract these genetic alterations. As evidence of unintended genetic integration accumulates, a reevaluation of mRNA technology is imperative to prevent irreversible consequences for human health. The findings presented highlight the necessity for transparency, rigorous research, and ethical considerations in the deployment of genetic-based therapies.
Keywords: mRNA vaccines, rogue transcription, genetic integration, spike proteins, autoimmune disorders.
References
Acevedo-Whitehouse, K., & Bruno, R. (2023). Potential health risks of mRNA-based vaccine therapy: A hypothesis. Medical Hypotheses, 171, 111015. https://doi.org/10.1016/j.mehy.2023.111015
Altman, N. L., Berning, A. A., Mann, S. C., Quaife, R. A., Gill, E. A., Auerbach, S. R., Campbell, T. B., & Bristow, M. R. (2023). Vaccination-Associated myocarditis and myocardial injury. Circulation Research, 132(10), 1338–1357. https://doi.org/10.1161/circresaha.122.321881
Balagurunathan, Y., & Sethuraman, R. R. (2024). An analysis of Ethics-Based Foundation and Regulatory Issues for Genomic Data Privacy. Journal of the Institution of Engineers (India) Series B, 105(4), 1097–1107. https://doi.org/10.1007/s40031-024-01058-3
Banoun, H. (2023). MRNA: vaccine or gene therapy? The safety regulatory issues. International Journal of Molecular Sciences, 24(13), 10514. https://doi.org/10.3390/ijms241310514
Chaudhary, N., Weissman, D., & Whitehead, K. A. (2021). mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 20(11), 817–838. https://doi.org/10.1038/s41573-021-00283-5
Córdoba, K. M., Jericó, D., Sampedro, A., Jiang, L., Iraburu, M. J., Martini, P. G., Berraondo, P., Avila, M. A., & Fontanellas, A. (2022). Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. International Review of Cell and Molecular Biology, 55–96. https://doi.org/10.1016/bs.ircmb.2022.03.005
Cusumano, M. A. (2024, May 1). How pharmaceutical companies utilize platform Strategy: A study of the COVID-19 mRNA vaccine development. https://dspace.mit.edu/handle/1721.1/155647
De Souza, A. S., De Freitas Amorim, V. M., Guardia, G. D. A., Santos, F. F. D., Ulrich, H., Galante, P. a. F., De Souza, R. F., & Guzzo, C. R. (2022). Severe Acute Respiratory Syndrome Coronavirus 2 Variants of concern: A perspective for emerging More Transmissible and Vaccine-Resistant Strains. Viruses, 14(4), 827. https://doi.org/10.3390/v14040827
Dórea, J. G. (2008). Persistent, bioaccumulative and toxic substances in fish: Human health considerations. The Science of the Total Environment, 400(1–3), 93–114. https://doi.org/10.1016/j.scitotenv.2008.06.017
Dwivedi, S., Purohit, P., Misra, R., Pareek, P., Goel, A., Khattri, S., Pant, K. K., Misra, S., & Sharma, P. (2017). Diseases and Molecular Diagnostics: a step closer to precision medicine. Indian Journal of Clinical Biochemistry, 32(4), 374–398. https://doi.org/10.1007/s12291-017-0688-8
Fine, P. E. M., & Zell, E. R. (1994). Outbreaks in Highly vaccinated populations: Implications for studies of vaccine performance. American Journal of Epidemiology, 139(1), 77–90. https://doi.org/10.1093/oxfordjournals.aje.a116937
Ghosh, A., Larrondo-Petrie, M. M., & Pavlovic, M. (2023). Revolutionizing Vaccine Development for COVID-19: A review of AI-Based Approaches. Information, 14(12), 665. https://doi.org/10.3390/info14120665
Ginsburg, G. S., & Willard, H. F. (2009). Genomic and personalized medicine: foundations and applications. Translational Research, 154(6), 277–287. https://doi.org/10.1016/j.trsl.2009.09.005
Gote, V., Bolla, P. K., Kommineni, N., Butreddy, A., Nukala, P. K., Palakurthi, S. S., & Khan, W. (2023). A comprehensive review of mRNA vaccines. International Journal of Molecular Sciences, 24(3), 2700. https://doi.org/10.3390/ijms24032700
Hilleman, M. R. (2004). Strategies and mechanisms for host and pathogen survival in acute and persistent viral infections. Proceedings of the National Academy of Sciences, 101(suppl_2), 14560–14566. https://doi.org/10.1073/pnas.0404758101
Ji, P., Li, Y., Wang, Z., Jia, S., Jiang, X., Chen, H., & Wang, Q. (2024). Advances in precision gene editing for liver fibrosis: From technology to therapeutic applications. Biomedicine & Pharmacotherapy, 177, 117003. https://doi.org/10.1016/j.biopha.2024.117003
Mandel, L. (2024). Autoimmune disease. In Springer eBooks (pp. 115–142). https://doi.org/10.1007/978-3-031-50012-1_7
Moore, J. P., & Klasse, P. J. (2020). COVID-19 vaccines: “Warp speed” needs mind melds, not warped minds. Journal of Virology, 94(17). https://doi.org/10.1128/jvi.01083-20
Mueller, S. (2023). Challenges and opportunities of mRNA vaccines against SARS-COV-2. In Springer eBooks. https://doi.org/10.1007/978-3-031-18903-6
Muñoz-Carrillo, J. L., Castro-García, F. P., Chávez-Rubalcaba, F., Chávez-Rubalcaba, I., Martínez-Rodríguez, J. L., & Hernández-Ruiz, M. E. (2018). Immune system disorders: hypersensitivity and autoimmunity. In InTech eBooks. https://doi.org/10.5772/intechopen.75794
Pilati, F. (2024, May 20). One pandemic, many controversies. Mapping the COVID-19 “infodemic” via digital methods. https://tesidottorato.depositolegale.it/handle/20.500.14242/62066
Qin, Z., Bouteau, A., Herbst, C., & Igyártó, B. Z. (2022). Pre-exposure to mRNA-LNP inhibits adaptive immune responses and alters innate immune fitness in an inheritable fashion. PLoS Pathogens, 18(9), e1010830. https://doi.org/10.1371/journal.ppat.1010830
Rana, M. S., Das, S. S., Hossian, M., & Bashir, M. S. (2023). Impact and challenges of digital marketing in health care during the COVID-19 pandemic. Journal of Primeasia, 4(1), 1-4. https://doi.org/10.25163/primeasia.419756
Rehman, S. (2024, April 30). Ethical Implications of Genetic Engineering: Balancing innovation and responsibility. https://sprcopen.org/FBG/article/view/69
Roos, D., & De Boer, M. (2021). Mutations in cis that affect mRNA synthesis, processing and translation. Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, 1867(9), 166166. https://doi.org/10.1016/j.bbadis.2021.166166
Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., & Shehzad, F. (2014). Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research, 22(6), 4122–4143. https://doi.org/10.1007/s11356-014-3994-1
Samir, S. (2023). Human DNA Mutations and their Impact on Genetic Disorders. Recent Patents on Biotechnology, 18(4), 288–315. https://doi.org/10.2174/0118722083255081231020055309
Seneff, S., & Nigh, G. (2021). Worse than the disease? Reviewing some possible unintended consequences of the mRNA vaccines against COVID-19. International Journal of Vaccine Theory Practice and Research, 2(1), 38–79. https://doi.org/10.56098/ijvtpr.v2i1.23
Shmulevich, R., & Krizhanovsky, V. (2020). Cell senescence, DNA damage, and metabolism. Antioxidants and Redox Signaling, 34(4), 324–334. https://doi.org/10.1089/ars.2020.8043
Skerritt, J. H. (2025). Considerations for mRNA product development, regulation and deployment across the lifecycle. Vaccines, 13(5), 473. https://doi.org/10.3390/vaccines13050473
Stati, G., Amerio, P., Nubile, M., Sancilio, S., Rossi, F., & Di Pietro, R. (2023). Concern about the Effectiveness of mRNA Vaccination Technology and Its Long-Term Safety: Potential Interference on miRNA Machinery. International Journal of Molecular Sciences, 24(2), 1404. https://doi.org/10.3390/ijms24021404
Strianese, O., Rizzo, F., Ciccarelli, M., Galasso, G., D’Agostino, Y., Salvati, A., Del Giudice, C., Tesorio, P., & Rusciano, M. R. (2020). Precision and Personalized Medicine: How Genomic approach Improves the Management of cardiovascular and Neurodegenerative Disease. Genes, 11(7), 747. https://doi.org/10.3390/genes11070747
Thi, H. V., Thi, L. N., Tang, T. L., & Chu, D. (2024). Biosafety and regulatory issues of RNA therapeutics. Progress in Molecular Biology and Translational Science, 311–329. https://doi.org/10.1016/bs.pmbts.2023.12.008
Tufael, M.?S.?B., Rana, M.?S., Das, S.?S., & Hossian, M. (2023). Nutritional evaluation of cassava meal components. Journal of Primeasia, 4(1), 1–4. https://doi.org/10.25163/angiotherapy.839572\
Wallis, J., Shenton, D. P., & Carlisle, R. C. (2019). Novel approaches for the design, delivery and administration of vaccine technologies. Clinical & Experimental Immunology, 196(2), 189–204. https://doi.org/10.1111/cei.13287
Weerarathna, I. N., Kumar, P., Luharia, A., & Mishra, G. (2024). Engineering with Biomedical Sciences Changing the Horizon of Healthcare-A Review. Bioengineered, 15(1). https://doi.org/10.1080/21655979.2024.2401269
Xu, S., Yang, K., Li, R., & Zhang, L. (2020). MRNA Vaccine Era—Mechanisms, drug platform and Clinical Prospection. International Journal of Molecular Sciences, 21(18), 6582. https://doi.org/10.3390/ijms21186582
Zinkernagel, R. M. (2003). On natural and artificial vaccinations. Annual Review of Immunology, 21(1), 515–546. https://doi.org/10.1146/annurev.immunol.21.120601.141045
View Dimensions
View Altmetric
Save
Citation
View
Share