RESEARCH ARTICLE   (Open Access)

Detection of Legionella pneumophila in the Water Samples of Food Industries and Hospitals in Bangladesh

Nazmun Naher1, Sangita Ahmed1*, and Md. Latiful Bari2

+ Author Affiliations

Microbial Bioactives 5(2) 198-203 https://doi.org/10.25163/microbbioacts.525320

Submitted: 19 August 2022  Revised: 01 December 2022  Published: 29 December 2022 

PCR-based rapid detection of slow-growing Legionella pneumophila

Abstract

BackgroundThe human pathogen Legionella pneumophila causes a serious pneumonia-like respiratory disease called Legionnaires' disease, mainly in elderly and immunocompromised individuals. This pathogen can be found in the water distribution systems of large constructions with cooling towers which is a common phenomenon at present in Bangladesh due to its rapid economic growth. But there is a dearth of information on the incidence of Legionella in Bangladesh. Therefore, the current study aimed to investigate the presence of Legionella pneumophila in hospital and industrial water distribution systems in Dhaka, Bangladesh. Methods A total of 114 water samples collected from two hospitals and five food industries were inoculated on the Legionella-specific medium Buffer Charcoal Yeast Extract (BCYE) agar medium before and after the treatment with acid, heat, or a combination of both. Samples producing Legionella-like colonies on BCYE agar medium were screened by Legionella Latex Test Kit, and the metagenomic DNAs obtained from these samples were analyzed by PCR using L. pneumophila-specific 16S rRNA primers. ResultsAmong 114 samples, Legionella-like colonies were observed in 30 water samples which demonstrated no agglutination in the Latex agglutination test. PCR analysis showed the presence of L. pneumophila in seven water samples, four in the potable water, chiller water, and cooling tower water of two different food industries, and three in ICU tap water, cooling tower water, and Fan Coil Units of two different hospitals. Sequence analysis of amplicons revealed that all seven sequences had 100% similarity with L. pneumophila. Conclusion: The presence of L. pneumophila in the water samples of local hospitals and food industries indicates that these habitats might serve as a potential site for Legionnaires' infection in Bangladesh. The results also showed that PCR, contrary to the conventional culture methods, could be more efficient and rapid in the identification of L. pneumophila.

Keywords: Legionnaires' disease; Water distribution system; Legionella pneumophila; PCR-based detection.

References

 

Alarcon Falconi, T. M., Cruz, M. S., & Naumova, E. N. (2018). The shift in seasonality of legionellosis in the USA. Epidemiol Infect, 146(14), 1824-1833.

Ahmadrajabi, R., Shakibaie, M. R., Iranmanesh, Z., Mollaei, H. R., &Sobhanipoor, M. H. (2016). Prevalence of mip virulence gene and PCR-base sequence typing of Legionella pneumophila from cooling water systems of two cities in Iran. Virulence, 7(5), 602-609.

Buse, H. Y., Schoen, M. E., &Ashbolt, N. J. (2012). Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Research, 46(4), 921-933.

Borges A., Simões M., Martínez-262 Murcia A., Saavedra M. J. (2012). Detection of Legionella spp. in Natural and Man-made Water Systems Using Standard Guidelines. Journal of Microbiology Research, 2(4): 95-102.

Cloud, J. L., Carroll, K. C., Pixton, P., Erali, M., &Hillyard, D. R. (2000). Detection of Legionella species in respiratory specimens using PCR with sequencing confirmation. Journal of clinical microbiology, 38(5), 1709-1712.

Erdogan, H., & Arslan, H. (2013). Evaluation of a Legionella outbreak emerged in a recently opening hotel. Mikrobiyolojibulteni, 47(2), 240-249.

Falkinham, J. O. (2020). Living with Legionella and Other Waterborne Pathogens. Microorganisms, 8(12), 2026.

Flannery B, Gelling LB, Vugia DJ, Weintraub JM, Salerno JJ, Conroy J, Stevens VA, Rose CE, Moore MR, Fields BS and Besser RE 2006. Reducing Legionella colonization in water systems with monochloramine. Emerging Infectious Diseases, 12(4), pp.588-96.

Gilpin, R. W., & Gilpin, A. M. K. (2014). Quantitative Measurement of Legionella pneumophila Counts in Routinely Maintained Commercial and Industrial Cooling Towers. Applied Biosafety, 19(2), 68-73.

Haque, A., Yoshizumi, A., Saga, T., Ohno, A., Ishii, Y., &Tateda, K. (2016). First Report of Legionella pneumophila Serogroup 1 Isolate from Public-Supply Water in Bangladesh. The Asia Journal of Applied Microbiology, 3(2), 26-30.

Islam, S., Begum, H. A., & Nili, N. Y. (2010). Bacteriological safety assessment of municipal tap water and quality of bottle water in Dhaka city: health hazard analysis. Bangladesh Journal of Medical Microbiology, 4(1), 9-13.

Islam, T., Acharjee, M., Tabassum, N., & Acharjee, M. R. (2020). Bacterial Propagation in Municipal Water and Deep Tube-well Water in Kashipur Locality of Narayanganj City, Bangladesh. Journal of Water and Environment Technology, 18(5), 327-337.

Ishimatsu, S., Miyamoto, H., Hori, H., Tanaka, I., & Yoshida, S. I. (2001). Sampling and detection of Legionella pneumophila aerosols generated from an industrial cooling tower. The Annals of occupational hygiene, 45(6), 421-427.

Jahan, R., Tarafder, S., Saleh, A. A., & Miah, R. A. (2015). Identification of Legionella from clinically diagnosed pneumonia patients and environmental samples. Bangladesh Medical Research Council Bulletin, 41(1), 24-28.

Jonas, D., Rosenbaum, A., Weyrich, S., &Bhakdi, S. (1995). Enzyme-linked immunoassay for detection of PCR-amplified DNA of legionellae in bronchoalveolar fluid. Journal of Clinical Microbiology, 33(5), 1247-1252.

Lam, M. C., Ang, L. W., Tan, A. L., James, L., & Goh, K. T. (2011). Epidemiology and control of legionellosis, Singapore. Emerging infectious diseases, 17(7), 1209–1215.

Mahbub, K. R., Nahar, A., Ahmed, M. M., & Chakraborty, A. (2011). Quality analysis of Dhaka WASA drinking water: Detection and. Journal of Environmental Science and Natural Resources, 4(2), 41-49.

Marchello, C., Dale, A. P., Thai, T. N., Han, D. S., & Ebell, M. H. (2016). Prevalence of atypical pathogens in patients with cough and community-acquired pneumonia: a meta-analysis. The Annals of Family Medicine, 14(6), 552-566.

Matsumoto, T., Matsumura, K., Anwar, K. S., Mollah, A. H., Murakami, H., Kobayashi, I., Kawagoe, K., Shiga, S., Kishimoto, T., Nahar, N., Tateda, K. & Yamaguchi, K.. (2006). Prevalence of Chlamydophila pneumoniae among Bangladeshi children under age 5 years with acute respiratory infections. Journal of Infection and Chemotherapy. 12(3),139-44. 

Moens, E. (2002). The prevention and control of Legionella spp. (including Legionnaires' disease) in food factories. Trends in Food Science & Technology, 13(11), 380-384.

Pagnier, I., Merchat, M., & La Scola, B. (2009). Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control. Future microbiology, 4(5), 615-629.

Parr, A., Whitney, E. A., &Berkelman, R. L. (2015). Legionellosis on the rise: a review of guidelines for prevention in the United States. Journal of Public Health Management and Practice, 21(5), E17.

Pereira, A., Silva, A. R., & Melo, L. F. (2021). Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms, 9(6), 1212.

Procedures for the recovery of Legionella from the environment. The Centers for Disease Control and Prevention (CDC) 2005. https://flenviro.com/CDC_legionella_method.pdf (accessed 2022/11/30)

Rafiee, M., Mesdaghinia, A., Hajjaran, H., Hajaghazadeh, M., Miahipour, A., &Jahangiri-Rad, M. (2014). The Efficacy of Residual Chlorine Content on the Control of Legionella spp. In Hospital Water Systems. Iranian journal of public health, 43(5), 637–644.

Shahidul, M. K., Mehadee, H., & Sunjukta, A. (2014). Incidence of multiple potentially pathogenic bacteria in tap water from different restaurants in Dhaka city, Bangladesh. International Food Research Journal, 21(1).

Shishir MA and Hoq MM (2020). The Exploitation of Microbes: Next Generation Global Solution. Microbial Bioactives, 3(1), 106-109.

Shokraei R., Fahimi H., Blanco S., Nowruzi B. (2019). Genomic Fingerprinting Using Highly Repetitive Sequences to Differentiate Close Cyanobacterial Strains. Microbial Bioactives, 2(1), 068-075

Stamm, D. R., & Stankewicz, H. A. (2022). Atypical Bacterial Pneumonia. In StatPearls. StatPearls Publishing.

Tercelj-Zorman, M., Seljak, M., Stare, J., Mencinger, J., Rakovec, J., Rylander, R., &Strle, F. (2004). A hospital outbreak of Legionella from a contaminated water supply. Archives of Environmental Health: An International Journal, 59(3), 156-159.

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE ) 2000. https://www.ashrae.org/file%20library/technical%20resources/standards%20and%20guidelines/risk-management-for-legionellosis.pdf (accessed 2022/11/30)

Van den Hoek, J. A., IJzerman, E. P., & Coutinho, R. A. (2006) Legionella outbreak in Amsterdam: a cooling tower as the source. Nederlands Tijdschrift voor Geneeskunde, 150(33), 1808-1811.

Vasanthabharathi. V., Jayalakshmi S. (2018). Bioactive potential from Marine sponge Callyspongia di­ffusa associated Psedumonas fluorescens BCPBMS-1 and Penicillium citrinum. Microbial Bioactives, 1(1), 008-013

Water quality—detection and enumeration of Legionella. ISO11731:2017. International Organization for Standardization, Geneva, Switzerland. https://www.iso.org/standard/61782.html (accessed 2022/11/30)

Weiss, D., Boyd, C., Rakeman, J. L., Greene, S. K., Fitzhenry, R., McProud, T., ... & Varma, J. K. (2017). A large community outbreak of Legionnaires' disease associated with a cooling tower in New York City, 2015. Public health reports, 132(2), 241-250.

Wellinghausen, N., Frost, C., &Marre, R. (2001). Detection of legionellae in hospital water samples by quantitative real-time LightCycler PCR. Applied and environmental microbiology, 67(9), 3985–3993.

World Health Organization (WHO) 2002. https://apps.who.int/iris/handle/10665/43233 (accessed 2022/11/30)

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



0
Save
0
Citation
811
View
0
Share