Abinaya, R., Ramya, P., Sivakami, V., Ponnusami, V., & Sugumaran, K. R. (2017). Alkaline protease production by Bacillus sp. MTCC 511 from cost effective substrate. Journal of Chemical and Pharmaceutical Sciences, 10(1), 488–491.
Adinarayana, K., Bapi Raju, K. V. V. S. ., & Ellaiah, P. (2004). Investigations on alkaline protease production with B. subtilis PE-11 immobilized in calcium alginate gel beads. Process Biochemistry, 39(11), 1331–1339. https://doi.org/10.1016/S0032-9592(03)00263-2
Adinarayana, K., & Ellaiah, P. (2002). Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. Journal of Pharmacy & Pharmaceutical Sciences, 5(3), 272–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12553896
Akcan, N., & Uyar, F. (2011). Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation. EurAsian Journal of Biosciences, 72(July), 64–72. https://doi.org/10.5053/ejobios.2011.5.0.8
Aksoy, S. Ç., Uzel, A., & Hames Kocabas, E. E. (2012). Extracellular serine proteases produced by Thermoactinomyces strains from hot springs and soils of West Anatolia. Annals of Microbiology, 62(2), 483–492. https://doi.org/10.1007/s13213-011-0280-z
Arslan-Alaton, I., Tureli, G., & Olmez-Hanci, T. (2009). Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: Optimization by response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry, 202(2–3), 142–153. https://doi.org/10.1016/j.jphotochem.2008.11.019
Bayraktar, E. (2001). Response surface optimization of the separation of dl-tryptophan using an emulsion liquid membrane. Process Biochemistry, 37(2), 169–175. https://doi.org/10.1016/S0032-9592(01)00192-3
Bhunia, B., Basak, B., & Dey, A. (2012). A review on production of serine alkaline protease by Bacillus spp . Journal of Biochemical Technology, 3(4), 448–457.
Carvalho, C. M. L., Serralheiro, M. L. M., Cabral, J. M. S., & Aires-Barros, M. R. (1997). Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles. Enzyme and Microbial Technology, 21(2), 117–123. https://doi.org/10.1016/S0141-0229(96)00245-1
Chang, S.-F., Chang, S.-W., Yen, Y.-H., & Shieh, C.-J. (2007). Optimum immobilization of Candida rugosa lipase on Celite by RSM. Applied Clay Science, 37(1–2), 67–73. https://doi.org/10.1016/j.clay.2006.12.001
Davati, N., & Najafi, M. B. H. (2013). Overproduction Strategies for Microbial Secondary Metabolites?: a Review Production Over- of Microbial. International Journal of Life Science and Pharma Research, 3, 23–37.
Deepak, V., Kalishwaralal, K., Ramkumarpandian, S., Babu, S. V., Senthilkumar, S. R., & Sangiliyandi, G. (2008). Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technology, 99(17), 8170–4. https://doi.org/10.1016/j.biortech.2008.03.018
El-Enshasy, H. A., Mohamed, N. A., Farid, M. A., & El-Diwany, A. I. (2008). Improvement of erythromycin production by Saccharopolyspora erythraea in molasses based medium through cultivation medium optimization. Bioresource Technology, 99(10), 4263–8. https://doi.org/10.1016/j.biortech.2007.08.050
Ernst, O., & Zor, T. (2010). Linearization of the bradford protein assay. Journal of Visualized Experiments?: JoVE, (38). https://doi.org/10.3791/1918
Gokhale, D. V., Patil, S. G., & Bastawde, K. B. (1991). Optimization of cellulase production by Aspergillus niger NCIM 1207. Applied Biochemistry and Biotechnology, 30(1), 99–109. https://doi.org/10.1007/BF02922026
Hajji, M., Rebai, A., Gharsallah, N., & Nasri, M. (2008). Optimization of alkaline protease production by Aspergillus clavatus ES1 in Mirabilis jalapa tuber powder using statistical experimental design. Applied Microbiology and Biotechnology, 79(6), 915–23. https://doi.org/10.1007/s00253-008-1508-0
Helal, M., Amer, H., & Abdelwahed, A. (2012). Physiological and Microbiological Studies on Production of Alkaline Protease from Locally Isolated Bacillus Subtilis. Australian Journal of Basic and Applied Sciences, 6(3), 193–203.
Hoq, M. M., Mamun, A. Al, Shishir, M. A., Akand, N. R., Khan, M., & Khan, S. N. (2013). Bioprocess development for eco-friendly microbial products and its impacts on bio-industry establishment in bangladesh. In International Conference on Biotechnology (Vol. 1, pp. 205–217). Dhaka, Bangladesh.: cares.org.bd. Retrieved from http://www.caresbd.org/uploads/book1_14.pdf
Hoq, M. M., Siddiquee, K. A. Z., Kawasaki, H., & Seki, T. (2005). Keratinolytic Activity of Some Newly Isolated Bacillus Species. Journal of Biological Sciences, 5(2), 193–200. https://doi.org/10.3923/jbs.2005.193.200
Huang, K. xue, Badger, M., Haney, K., & Evans, S. L. (2007). Large scale production of Bacillus thuringiensis PS149B1 insecticidal proteins Cry34Ab1 and Cry35Ab1 from Pseudomonas fluorescens. Protein Expression and Purification, 53(2), 325–330. https://doi.org/10.1016/j.pep.2007.01.010
Lakshmi, B., & Hemalatha, K. (2015). Response surface optimization of medium composition for alkaline protease production by Bacillus cereus strain S8. International Journal of Pure and Applied Bioscience, 3(4), 216–223.
Lakshmi, B., & Hemalatha, K. (2016). Production of Alkaline Protease from Bacillus licheniformis through Statistical Optimization of Growth Media by Response Surface Methodology. Fermentation Technology, 5(2), 1–7. https://doi.org/10.4172/2167-7972.1000130
Li, J., Ma, C., Ma, Y., Li, Y., Zhou, W., & Xu, P. (2007). Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Applied Microbiology and Biotechnology, 74(3), 563–571. https://doi.org/10.1007/s00253-006-0699-5
Liu, G.-Q., & Wang, X.-L. (2007). Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Applied Microbiology and Biotechnology, 74(1), 78–83. https://doi.org/10.1007/s00253-006-0661-6
Mamun, A. Al, Mian, M., Saifuddin, M., Khan, S. N., & Hoq, M. (2017). Optimization of fermenting medium by statistical method for production of alkaline protease by Bacillus licheniformis MZK05M9. Journal of Applied Biology & Biotechnology, 5(6), 24–28. https://doi.org/10.7324/JABB.2017.50604
Md. Mahmuduzzaman Mian. (2014). Optimization of alkaline protease production by Bacillus licheniformis MZK05M9 in batch culture using Response Surface Methodology. Brac University. Brac University. Retrieved from http://hdl.handle.net/10361/4150
Montgomery, D. C. (2006). Design and Analysis of Experiments. Technometrics, 48(1), 158–158. https://doi.org/10.1198/tech.2006.s372
Mourin, M., Shishir, A., Khan, S. N., & Hoq, M. M. (2015). Regulation of major cultural components for designing a cost effective medium to increase δ-endotoxin synthesis by Bacillus thuringiensis. African Journal of Biotechnology, 14(16), 1379–1386. https://doi.org/10.5897/AJB2014.14340
Nahar, M., Asaduzzaman Shishir, M., Waliullah, S., Sanowarul Haque, M., Ilias, M., Manjurul Karim, M., … Mozammel Hoq, M. (2016). Cloning, expression and structure simulation of keratinase from Bacillus licheniformis strain MZK05. Malaysian Journal of Microbiology, 12(2), 182–190. https://doi.org/10.21161/mjm.78515
Nazir, Y., Shuib, S., Kalil, M. S., Song, Y., & Hamid, A. A. (2018). Optimization of Culture Conditions for Enhanced Growth, Lipid and Docosahexaenoic Acid (DHA) Production of Aurantiochytrium SW1 by Response Surface Methodology. Scientific Reports, 8(1), 8909. https://doi.org/10.1038/s41598-018-27309-0
Qureshi, A. S., Bhutto, M. A., Khushk, I., & Dahot, M. U. (2011). Optimization of cultural conditions for protease production by Bacillus subtilis EFRL 01. African Journal of Biotechnology, 10(26), 5173–5181. https://doi.org/10.5897/AJB09.1574
Rahman, A., & Gomes, D. J. (2003). Optimization of medium ingredients for A-mannanase production by Aspergillus sp. isolated from commercial guar gum. Dhaka University Journal of Biological Sciences, 12(2), 153–164.
Rao, K. J., Kim, C.-H., & Rhee, S.-K. (2000). Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochemistry, 35(7), 639–647. https://doi.org/10.1016/S0032-9592(99)00129-6
Salaheen, S., Mamun, M. A. Al, Khan, S. N., & Hoq, M. M. (2015). Improvement of Bacillus licheniformis MZK05 by mutation for increased production of keratinase. Dhaka University Journal of Biological Sciences, 24(1), 17–23. Retrieved from http://journal.library.du.ac.bd/index.php?journal=dujbs&page=article&op=download&path%5B%5D=1004&path%5B%5D=964
Sarrai, A., Hanini, S., Merzouk, N., Tassalit, D., Szabó, T., Hernádi, K., & Nagy, L. (2016). Using Central Composite Experimental Design to Optimize the Degradation of Tylosin from Aqueous Solution by Photo-Fenton Reaction. Materials, 9(6), 428–438. https://doi.org/10.3390/ma9060428
Saxena, R., & Singh, R. (2010). Statistical optimization of conditions for protease production from Bacillus sp. Acta Biologica Szegediensis, 54(2), 135–141.
Sayyad, S. A., Panda, B. P., Javed, S., & Ali, M. (2007). Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Applied Microbiology and Biotechnology, 73(5), 1054–8. https://doi.org/10.1007/s00253-006-0577-1
Sen, R. (1997). Response Surface Optimization of the Critical Media Components for the Production of Surfactin. Journal of Chemical Technology & Biotechnology, 68(3), 263–270. https://doi.org/10.1002/(SICI)1097-4660(199703)68:3<263::AID-JCTB631>3.0.CO;2-8
Sharma, K. M., Kumar, R., Panwar, S., & Kumar, A. (2017). Microbial alkaline proteases: Optimization of production parameters and their properties. Journal of Genetic Engineering and Biotechnology, 15(1), 115–126. https://doi.org/https://doi.org/10.1016/j.jgeb.2017.02.001
Song, C., Li, X., Wang, L., & Shi, W. (2016). Fabrication, Characterization and Response Surface Method (RSM) Optimization for Tetracycline Photodegration by Bi3.84W0.16O6.24- graphene oxide (BWO-GO). Scientific Reports, 6(1), 37466. https://doi.org/10.1038/srep37466
Song, Z., Zhao, Z., Qin, X., Huang, J., Shi, H., Wu, B., & Chen, Q. (2007). Highly sensitive choline biosensor based on carbon nanotube-modified Pt electrode combined with sol-gel immobilization. Frontiers of Chemistry in China, 2(2), 146–150. https://doi.org/10.1007/s11458-007-0030-8
Srinivas, M. R. S., Chand, N., & Lonsane, B. K. (1994). Use of Plackett-Burman design for rapid screening of several nitrogen sources, growth/product promoters, minerals and enzyme inducers for the production of alpha-galactosidase by Aspergillus niger MRSS 234 in solid state fermentation system. Bioprocess Engineering. https://doi.org/10.1007/BF00369470
Suganthi, C., Mageswari, A., Karthikeyan, S., Anbalagan, M., Sivakumar, A., & Gothandam, K. M. (2013). Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments. Journal of Genetic Engineering and Biotechnology, 11(1), 47–52. https://doi.org/https://doi.org/10.1016/j.jgeb.2013.02.002
Xiao, Z. J., Liu, P. H., Qin, J. Y., & Xu, P. (2007). Statistical optimization of medium components for enhanced acetoin production from molasses and soybean meal hydrolysate. Applied Microbiology and Biotechnology, 74(1), 61–8. https://doi.org/10.1007/s00253-006-0646-5