References
Alotaibi, E. (2020). Application of machine learning in the hotel industry: a critical review. Journal of Association of Arab Universities for Tourism and Hospitality, 18(3), 78-96.
Berbekova, A., Uysal, M., & Assaf, A. G. (2021). A thematic analysis of crisis management in tourism: A theoretical perspective. Tourism Management, 86, 104342.
Boch, A., Hohma, E., & Trauth, R. (2022). Towards an accountability framework for AI: Ethical and legal considerations. Institute for Ethics in AI, Technical University of Munich: Munich, Germany.
Buhalis, D., & Moldavska, I. (2022). Voice assistants in hospitality: using artificial intelligence for customer service. Journal of Hospitality and Tourism Technology, 13(3), 386-403.
Busulwa, R., Pickering, M., & Mao, I. (2022). Digital transformation and hospitality management competencies:
Chugh, A., Patnana, A. K., Kumar, P., Chugh, V. K., Khera, D., & Singh, S. (2020). Critical analysis of methodological quality of systematic reviews and meta-analysis of antibiotics in third molar surgeries using AMSTAR 2. Journal of Oral Biology and Craniofacial Research, 10(4), 441-449.
Ding, X., Fort, T., Redding, S., & Schott, P. (2022). Structural Change Within versus Across Firms: Evidence from the United States. https://doi.org/10.3386/w30127
Egan, D., & Haynes, N. C. (2019). Manager perceptions of big data reliability in hotel revenue management decision making. International Journal of Quality & Reliability Management, 36(1), 25-39.
Feilhauer, S., & Hahn, R. (2021). Formalization of firms’ evaluation processes in cross-sector partnerships for sustainability. Business & Society, 60(3), 684-726.
Fuchs, M., Höpken, W., & Lexhagen, M. (2014). Big data analytics for knowledge generation in tourism destinations A case from Sweden. Journal of destination marketing & management, 3(4), 198-209.
Gkikas, D. C., & Theodoridis, P. K. (2021). AI in Consumer Behavior. In Learning and analytics in intelligent systems (pp. 147–176). https://doi.org/10.1007/978-3-030-80571-5_10
Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. International Journal of Intelligent Networks, 3, 119–132. https://doi.org/10.1016/j.ijin.2022.08.005
Holston-Okae, B. L. (2018). The effect of employee turnover in the hospitality industry: Quantitative correlational study. International Journal of Learning and Development, 8(1), 156-183.
Joshi, V., Reddy, A., Joshi, M., & Chopra, N. (2022b, February 23). Leveraging machine learning algorithms and natural language processing for enhanced AI-Driven influencer campaign analytics. https://aaairj.com/index.php/v1/article/view/9
Kapitan, S., Van Esch, P., Soma, V., & Kietzmann, J. (2021). Influencer marketing and authenticity in content creation. Australasian Marketing Journal (AMJ), 30(4), 342–351. https://doi.org/10.1177/18393349211011171
Kaustubha, K. (Ed.). (2021). Understanding World Media. KK Publications.
Koseoglu, M. A., Yick, M. Y. Y., King, B., & Arici, H. E. (2022). Relational bibliometrics for hospitality and tourism research: A best practice guide. Journal of Hospitality and Tourism Management, 52, 316-330.
Kumar, V., Ramachandran, D., & Kumar, B. (2020). Influence of new-age technologies on marketing: A research agenda. Journal of Business Research, 125, 864–877. https://doi.org/10.1016/j.jbusres.2020.01.007
LakshmiKeerthi, P. (2019). Usage of HR Analytics and Challenges Encountered by Singapore Based Companies (Doctoral dissertation, SRI VENKATESWARA UNIVERSITY TIRUPATI).
Lamest, M., & Brady, M. (2019). Data-focused managerial challenges within the hotel sector. Tourism Review, 74(1), 104-115.
Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
Lee, M., Kwon, W., & Back, K. J. (2021). Artificial intelligence for hospitality big data analytics: developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117-2136.
Lewis, C., Fischer, S., Weiner, B. J., Stanick, C., Kim, M., et al. (2015). Outcomes for implementation science: An enhanced systematic review of instruments using evidence-based rating criteria.
Ling, S., Zhao, M., & Zhu, Y. Unpacking the Paradox of Profit Margins: An Analysis of Market Concentration and Economic Dynamics in the US Meat Processing Industry.
Mansour, R. M., Rana, M. E., & Al-Maatouk, Q. (2020). A theoretical framework for implementation of cloud computing in the malaysian hospitality industry. International Journal, 9(2), 2277-2286.
Mariani, M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231-278.
Mariani, M., Bresciani, S., & Dagnino, G. B. (2021). The competitive productivity (CP) of tourism destinations: an integrative conceptual framework and a reflection on big data and analytics. International Journal of Contemporary Hospitality Management, 33(9), 2970-3002.
Marieke, D. M. (2021). Global Marketing and Advertising: Understanding cultural paradoxes. SAGE Publications Ltd - Torrossa. https://www.torrossa.com/it/resources/an/5282213
Md Habibur Rahman, Tanjila Islam, Mohammad Hamid Hasan Amjad, Md Shihab Sadik Shovon, Md. Estehad
Mirzaalian, F., & Halpenny, E. (2019). Social media analytics in hospitality and tourism: A systematic literature review and future trends. Journal of Hospitality and Tourism Technology, 10(4), 764-790.
Piroti, M. (2023). Social media influencer marketing and the role of credibility. Theseus. https://www.theseus.fi/handle/10024/813715
Rahman, M. H., Islam, T., Hossen, M. E., Chowdhury, M. E., Hayat, R., Shovon, &. M. S. S., Shabbir, H. -. A. -., Alamgir, M.,
Sharma, A., Patel, N., & Gupta, R. (2022, June 20). Leveraging machine learning algorithms and natural language processing for enhanced AI-Driven influencer campaign analytics. https://eaaij.com/index.php/eaaij/article/view/22