Bacterial Surface Components and Toxins in Cancer Development: Mechanisms of Oncogenesis and Therapeutic Implications
Chandan Sarkar1, Abul Hasnat2, Md Mostafizur Rahman3, Mashsharat Maliha4, Bikom Chandra Singha5, Tufael6*
Microbial Bioactives 8(1) 1-8 https://doi.org/10.25163/microbbioacts.8110174
Submitted: 14 November 2024 Revised: 08 January 2025 Published: 12 January 2025
Abstract
Background: Cancer arises from genetic alterations, often influenced by environmental and lifestyle factors, including microbial infections. While the link between viruses such as HPV and HBV and cancer is well-established, the involvement of bacteria in cancer development remains less explored. Growing evidence suggests that bacterial surface components, toxins, and effector proteins play a crucial role in altering host signaling pathways, ultimately driving oncogenesis. Methods: This review consolidates current research on how bacteria interact with host cells, with a particular focus on bacterial surface molecules, toxins, and their roles in immune evasion, cellular invasion, and oncogenic signaling. Both experimental studies and epidemiological data are evaluated to better understand the connection between bacterial infections and cancer formation. Results: Surface molecules from bacteria like Helicobacter pylori CagL and Fusobacterium nucleatum FadA have been found to disrupt key host pathways, such as β-catenin and Wnt signaling, leading to cellular transformation. Similarly, lipopolysaccharides (LPS) from Gram-negative bacteria promote inflammation-driven tumorigenesis through TLR4 activation. Bacterial toxins, including cytolethal distending toxin (CDT) and diphtheria toxin, cause genomic instability, interfere with apoptotic pathways, and activate proliferative signals, further establishing bacterial infections as contributors to cancer progression. Conclusion: Bacterial infections contribute to cancer development through a combination of immune modulation, DNA damage, and disruption of cellular signaling pathways. A deeper understanding of these mechanisms offers promising avenues for developing preventive measures and targeted therapies to counter microbial-driven oncogenesis. The pivotal role of the microbiome in cancer biology highlights the need for future research to unravel the intricate interactions between bacteria and host cells, fostering advancements in cancer prevention and treatment strategies.
Keywords: Microbial oncogenesis, Bacterial surface components, Cancer signaling pathways, Inflammation-driven tumorigenesis, Bacterial toxins, genomic instability.
References
Abeyta, M., Hardy, G. G., & Yother, J. (2003). Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infection and Immunity, 71(4), 218–225.
Abreu, M. T. (2010). Toll-like receptor signaling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nature Reviews Immunology, 10(2), 131–144.
Arthur, J. C., Perez-Chanona, E., Muhlbauer, M., Tomkovich, S., Uronis, J. M., Fan, T. J., Campbell, B. J., Abujamel, T., Dogan, B., Rogers, A. B., et al. (2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 338, 120–123.
Beuzon, C. R., Meresse, S., Unsworth, K. E., Ruiz-Albert, J., Garvis, S., Waterman, S. R., Ryder, T. A., Boucrot, E., & Holden, D. W. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO Journal, 19(12), 3235–3249.
Blot, W. J., McLaughlin, J. K., Winn, D. M., Austin, D. F., Greenberg, R. S., Preston-Martin, S., Bernstein, L., Schoenberg, J. B., Stemhagen, A., & Fraumeni, J. F., Jr. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Research, 48(11), 3282–3287.
Bosch, F. X., Manos, M. M., Munoz, N., Sherman, M., Jansen, A. M., Peto, J., Schiffman, M. H., Moreno, V., Kurman, R., & Shah, K. V. (1995). Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. International Biological Study on Cervical Cancer (IBSCC) Study Group. Journal of the National Cancer Institute, 87(11), 796–802.
Buc, E., Dubois, D., Sauvanet, P., Raisch, J., Delmas, J., Darfeuille-Michaud, A., Pezet, D., & Bonnet, R. (2013). High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE, 8, e56964.
Castellarin, M., Warren, R. L., Freeman, J. D., Dreolini, L., Krzywinski, M., Strauss, J., Barnes, R., Watson, P., Allen-Vercoe, E., Moore, R. A., et al. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Research, 22(2), 299–306.
Chong, A., Wehrly, T. D., Nair, V., Fischer, E. R., Barker, J. R., Klose, K. E., & Celli, J. (2008). The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infection and Immunity, 76(11), 5488-5499.
Coleman, O. I., & Haller, D. (2017). Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Frontiers in Immunology, 8, 1927.
Cortes-Bratti, X., Chaves-Olarte, E., Lagergard, T., & Thelestam, M. (2000). Cellular internalization of cytolethal distending toxin from Haemophilus ducreyi. Infection and Immunity, 68, 6903–6911.
Costa, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015). Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nature Reviews Microbiology, 13(6), 343–359.
Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrede, J. P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences, 107, 11537–11542.
Dapito, D. H., Mencin, A., Gwak, G. Y., Pradere, J. P., Jang, M. K., Mederacke, I., Caviglia, J. M., Khiabanian, H., Adeyemi, A., Bataller, R., et al. (2012). Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell, 21(4), 504–516.
Dejea, C. M., Fathi, P., Craig, J. M., Boleij, A., Taddese, R., Geis, A. L., Wu, X., DeStefano Shields, C. E., Hechenbleikner, E. M., Huso, D. L., et al. (2018). Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science, 359, 592–597.
El-Serag, H. B. (2012). Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 142(6), 1264–1273.e1.
Fehr, D., Casanova, C., Liverman, A., Blazkova, H., Orth, K., Dobbelaere, D., Frey, J., & Burr, S. E. (2006). AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signaling pathway. Microbiology, 152(9), 2809–2818.
Fink, S. P., Yamauchi, M., Nishihara, R., Jung, S., Kuchiba, A., Wu, K., Cho, E., Giovannucci, E., Fuchs, C. S., Ogino, S., et al. (2014). Aspirin and the risk of colorectal cancer in relation to the expression of 15-hydroxyprostaglandin dehydrogenase (15-PGDH, HPGD). Science Translational Medicine, 6(233), 233re2.
Franco, A. T., Johnston, E., Krishna, U., Yamaoka, Y., Israel, D. A., Nagy, T. A., Wroblewski, L. E., Piazuelo, M. B., Correa, P., & Peek, R. M. Jr. (2008). Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Research, 68(2), 379–387.
Fredlund, J., & Enninga, J. (2014). Cytoplasmic access by intracellular bacterial pathogens. Trends in Microbiology, 22(3), 128-137.
Fulbright, L. E., Ellermann, M., & Arthur, J. C. (2017). The microbiome and the hallmarks of cancer. PLoS Pathogens, 13(12), e1006480.
Geno, K. A., Gilbert, G. L., Song, J. Y., Skovsted, I. C., Klugman, K. P., Jones, C., Konradsen, H. B., & Nahm, M. H. (2015). Pneumococcal capsules and their types: Past, present, and future. Clinical Microbiology Reviews, 28(5), 871–899.
Gewirtz, A. T., Yu, Y., Krishna, U. S., Israel, D. A., Lyons, S. L., & Peek, R. M. Jr. (2004). Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. Journal of Infectious Diseases, 189(10), 1914–1920.
Guerra, L., Carr, H. S., Richter-Dahlfors, A., Masucci, M. G., Thelestam, M., Frost, J. A., & Frisan, T. (2008). A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS ONE, 3, e2254.
Hannemann, S., Gao, B., & Galán, J. E. (2013). Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathogens, 9(11), e1003668.
Henry, R., Shaughnessy, L., Loessner, M. J., Alberti-Segui, C., Higgins, D. E., & Swanson, J. A. (2006). Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cellular Microbiology, 8(1), 107-119.
Ishijima, N., Suzuki, M., Ashida, H., Ichikawa, Y., Kanegae, Y., Saito, I., Boren, T., Haas, R., Sasakawa, C., & Mimuro, H. (2011). BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. Journal of Biological Chemistry, 286(29), 25256–25264.
Jahan, T., Halder, T., Islam, A., Patwary, M. U., Mia, R., Amin, S., Rahman, A. (2024). "Genetic Disorders: Global Impacts, Healthcare Disparities, and Challenges in Bangladesh", Journal of Precision Biosciences, 6(1),1-17,10044
Jones, R. M., Wu, H., Wentworth, C., Luo, L., Collier-Hyams, L., & Neish, A. S. (2008). Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host & Microbe, 3(3), 233–244.
Kawasaki, K., Ernst, R. K., & Miller, S. I. (2004). 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through toll-like receptor 4. Journal of Biological Chemistry, 279(19), 20044–20048.
Khoury, J. D., Tannir, N. M., Williams, M. D., Chen, Y., Yao, H., Zhang, J., Thompson, E. J., TCGA Network, Meric-Bernstam, F., Medeiros, L. J., et al. (2013). Landscape of DNA virus associations across human malignant cancers: Analysis of 3,775 cases using RNA-seq. Journal of Virology, 87(16), 8916–8926.
Koh, H. K., Geller, A. C., Miller, D. R., Grossbart, T. A., & Lew, R. A. (1996). Prevention and early detection strategies for melanoma and skin cancer: Current status. Archives of Dermatology, 132(4), 436–443.
Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research, 22(2), 292–298.
Krump, N. A., & You, J. (2018). Molecular mechanisms of viral oncogenesis in humans. Nature reviews. Microbiology, 16(11), 684–698.
Kuijl, C., Savage, N. D., Marsman, M., Tuin, A. W., Janssen, L., Egan, D. A., Ketema, M., van den Nieuwendijk, R., van den Eeden, S. J., Geluk, A., & et al. (2007). Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature, 450(7171), 725–730.
Kuo, S. C., Hu, Y. W., Liu, C. J., Lee, Y. T., Chen, Y. T., Chen, T. L., Chen, T. J., & Fung, C. P. (2013). Association between tuberculosis infections and non-pulmonary malignancies: A nationwide population-based study. British Journal of Cancer, 109(1), 229–233.
Lee, C. W., Rickman, B., Rogers, A. B., Ge, Z., Wang, T. C., & Fox, J. G. (2008). Helicobacter pylori eradication prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Research, 68(9), 3540–3548.
Li, Y., Kundu, P., Seow, S. W., de Matos, C. T., Aronsson, L., Chin, K. C., Karre, K., Pettersson, S., & Greicius, G. (2012). Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis, 33(6), 1231–1238.
Lofgren, J. L., Whary, M. T., Ge, Z., Muthupalani, S., Taylor, N. S., Mobley, M., Potter, A., Varro, A., Eibach, D., Suerbaum, S., et al. (2011). Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology, 140(1), 210–220.
Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661–672.
Lu, R., Bosland, M., Xia, Y., Zhang, Y. G., Kato, I., & Sun, J. (2017). Presence of Salmonella AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens. Oncotarget, 8(34), 55104–55115.
Lu, R., Wu, S., Zhang, Y. G., Xia, Y., Liu, X., Zheng, Y., Chen, H., Schaefer, K. L., Zhou, Z., Bissonnette, M., et al. (2014). Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis, 3(11), e105.
Lu, R., Wu, S., Zhang, Y. G., Xia, Y., Zhou, Z., Kato, I., Dong, H., Bissonnette, M., & Sun, J. (2016). Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neoplasia, 18(5), 307–316.
McCracken, K. W., Cata, E. M., Crawford, C. M., Sinagoga, K. L., Schumacher, M., Rockich, B. E., Tsai, Y. H., Mayhew, C. N., Spence, J. R., Zavros, Y., & et al. (2014). Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature, 516(7531), 400-404.
Meenan, N. A., Visai, L., Valtulina, V., Schwarz-Linek, U., Norris, N. C., Gurusidappa, S., Hook, M., Speziale, P., & Potts, J. R. (2007). The tandem beta-zipper model defines high affinity fibronectin-binding repeats within Staphylococcus aureus FnBPA. Journal of Biological Chemistry, 282(34), 25893–25902.
Melenotte, C., Million, M., Audoly, G., Gorse, A., Dutronc, H., Roland, G., Dekel, M., Moreno, A., Cammilleri, S., Carrieri, M. P., & et al. (2016). B-cell non-Hodgkin lymphoma linked to Coxiella burnetii. Blood, 127(1), 113–121.
Mostafa, M. H., Sheweita, S. A., & O’Connor, P. J. (1999). Relationship between schistosomiasis and bladder cancer. Clinical Microbiology Reviews, 12(1), 97–111.
Mughini-Gras, L., Schaapveld, M., Kramers, J., Mooij, S., Neefjes-Borst, E. A., Pelt, W. V., & Neefjes, J. (2018). Increased colon cancer risk after severe Salmonella infection. PLoS ONE, 13(11), e0189721.
Münger, K., Baldwin, A., Edwards, K. M., Hayakawa, H., Nguyen, C. L., Owens, M., Grace, M., & Huh, K. (2004). Mechanisms of human papillomavirus-induced oncogenesis. Journal of Virology, 78(21), 11451–11460.
Murphy, J. R. (2011). Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins, 3, 294–308.
Nakayama, M., Hisatsune, J., Yamasaki, E., Isomoto, H., Kurazono, H., Hatakeyama, M., Azuma, T., Yamaoka, Y., Yahiro, K., Moss, J., & et al. (2009). Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. Journal of Biological Chemistry, 284(3), 1612-1619.
Nelson, W. J., & Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303, 1483–1487.
Neuveut, C., Wei, Y., & Buendia, M. A. (2010). Mechanisms of HBV-related hepatocarcinogenesis. Journal of Hepatology, 52(5), 594–604.
Nougayrede, J. P., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., Buchrieser, C., Hacker, J., Dobrindt, U., & Oswald, E. (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 313, 848–851.
Ozanic, M., Marecic, V., Abu Kwaik, Y., & Santic, M. (2015). The divergent intracellular lifestyle of Francisella tularensis in evolutionarily distinct host cells. PLoS Pathogens, 11(9), e1005208.
Parkin, D. M., Mesher, D., & Sasieni, P. (2011). Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. British Journal of Cancer, 105(Suppl 2), S66–S69.
Polk, D. B., & Peek, R. M. Jr. (2010). Helicobacter pylori: Gastric cancer and beyond. Nature Reviews Cancer, 10(6), 403–414.
Popp, A., Billker, O., & Rudel, T. (2001). Signal transduction pathways induced by virulence factors of Neisseria gonorrhoeae. International Journal of Medical Microbiology, 291(5), 307–314.
Putze, J., Hennequin, C., Nougayrede, J. P., Zhang, W., Homburg, S., Karch, H., Bringer, M. A., Fayolle, C., Carniel, E., Rabsch, W., et al. (2009). Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infection and Immunity, 77, 4696–4703.
Rahman, M. H., Aunni, S. A. A., Ahmed, B., Rahman, M. M., Shabuj, M. M. H., Das, D. C., Akter, M. S., & Numan, A. A. (2024). Artificial intelligence for improved diagnosis and treatment of bacterial infections. Microbial Bioactives, 7(1), 1-18.
Rahman, M. H., Islam, T., Amjad, M. H. H., Shovon, M. S. S., Chowdhury, M. E., Ashakin, M. R., Hossain, B., Bhowmik, P. K., Nurullah, M., & Sunny, A. R. (2024). Impact of Internet of Things (IoT) on healthcare in transforming patient care and overcoming operational challenges. Angiotherapy, 8(11), 1-9.
Raibaud, S., Schwarz-Linek, U., Kim, J. H., Jenkins, H. T., Baines, E. R., Gurusidappa, S., Hook, M., & Potts, J. R. (2005). Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes. Journal of Biological Chemistry, 280(22), 18803–18809.
Rajashekar, R., Liebl, D., Chikkaballi, D., Liss, V., & Hensel, M. (2014). Live cell imaging reveals novel functions of Salmonella enterica SPI2-T3SS effector proteins in remodeling of the host cell endosomal system. PLoS One, 9(7), e115423.
Rakoff-Nahoum, S., & Medzhitov, R. (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science, 317(5834), 124–127.
Rhee, K. J., Wu, S., Wu, X., Huso, D. L., Karim, B., Franco, A. A., Rabizadeh, S., Golub, J. E., Mathews, L. E., Shin, J., et al. (2009). Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infection and Immunity, 77, 1708–1718.
Rosadi, F., Fiorentini, C., & Fabbri, A. (2016). Bacterial protein toxins in human cancers. Pathogens and Disease, 74, ftv105.
Rubinstein, M. R., Wang, X., Liu, W., Hao, Y., Cai, G., & Han, Y. W. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host & Microbe, 14(2), 195–206.
Santic, M., Asare, R., Skrobonja, I., Jones, S., & Abu Kwaik, Y. (2008). Acquisition of the vacuolar ATPase proton pump and phagosome acidification are essential for escape of Francisella tularensis into the macrophage cytosol. Infection and Immunity, 76(6), 2671-2677.
Sears, C. L. (2009). Enterotoxigenic Bacteroides fragilis: A rogue among symbiotes. Clinical Microbiology Reviews, 22, 349–369.
Senerovic, L., Tsunoda, S. P., Goosmann, C., Brinkmann, V., Zychlinsky, A., Meissner, F., Kolbe, M. (2012). Spontaneous formation of IpaB ion channels in host cell membranes reveals how Shigella induces pyroptosis in macrophages. Cell Death and Disease, 3, e384.
Shaughnessy, L. M., Lipp, P., Lee, K.-D., & Swanson, J. A. (2007). Localization of protein kinase C ε to macrophage vacuoles perforated by Listeria monocytogenes cytolysin. Cellular Microbiology, 9(7), 1695-1704.
Siddique, M. A. B., Debnath, A., Ullah, M. S., Amin, M. S., Rahman, A., Mou, M. A., Biswash, M. A. R., Tamim, M. S. B. N., Akter, M. S., Ahmed, B., Numan, A. A., Shabuj, M. M. H. (2025). "Targeting p38 MAPK: Molecular Docking and Therapeutic Insights for Alzheimer’s Disease Management", Journal of Primeasia, 6(1),1-11,10116.
Siegel, R. L., Jacobs, E. J., Newton, C. C., Feskanich, D., Freedman, N. D., Prentice, R. L., & Jemal, A. (2015). Deaths due to cigarette smoking for 12 smoking-related cancers in the United States. JAMA Internal Medicine, 175(10), 1574–1576.
Sindhwani, A., Arya, S. B., Kaur, H., Jagga, D., Tuli, A., & Sharma, M. (2017). Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication. PLoS Pathogens, 13(4), e1006700.
Sokolova, O., Bozko, P. M., & Naumann, M. (2008). Helicobacter pylori suppresses glycogen synthase kinase 3beta to promote beta-catenin activity. Journal of Biological Chemistry, 283(45), 29367-29374.
Sun, J., Hobert, M. E., Rao, A. S., Neish, A. S., & Madara, J. L. (2004). Bacterial activation of beta-catenin signaling in human epithelia. American Journal of Physiology-Gastrointestinal and Liver Physiology, 287(1), G220–G227.
Tabassam, F. H., Graham, D. Y., & Yamaoka, Y. (2009). Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3β phosphorylation. Cellular Microbiology, 11(1), 70–82.
Toprak, N. U., Yagci, A., Gulluoglu, B. M., Akin, M. L., Demirkalem, P., Celenk, T., & Soyletir, G. (2006). A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clinical Microbiology and Infection, 12(8), 782-786.
Tran, A. X., Stead, C. M., & Trent, M. S. (2005). Remodeling of Helicobacter pylori lipopolysaccharide. Journal of Endotoxin Research, 11(3), 161–166.
Trosky, J. E., Li, Y., Mukherjee, S., Keitany, G., Ball, H., & Orth, K. (2007). VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. Journal of Biological Chemistry, 282(47), 34299–34305.
Trosky, J. E., Mukherjee, S., Burdette, D. L., Roberts, M., McCarter, L., Siegel, R. M., & Orth, K. (2004). Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. Journal of Biological Chemistry, 279(50), 51953–51957.
Tufael, M., Rahman, M. M., Upadhye, V. J., Hossain, M. F., & Uddin, N. (2024). Combined biomarkers for early diagnosis of hepatocellular carcinoma. Journal of Angiotherapy, 8(5), 1–12.
Vannucci, L., Stepankova, R., Kozakova, H., Fiserova, A., Rossmann, P., & Tlaskalova-Hogenova, H. (2008). Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. International Journal of Oncology, 32(3), 609–617.
Wang, E. L., Qian, Z. R., Nakasono, M., Tanahashi, T., Yoshimoto, K., Bando, Y., Kudo, E., Shimada, M., & Sano, T. (2010). High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. British Journal of Cancer, 102(6), 908–915.
Wang, F., Meng, W., Wang, B., & Qiao, L. (2014). Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Letters, 345(2), 196-202.
Wiedemann, T., Hofbaur, S., Tegtmeyer, N., Huber, S., Sewald, N., Wessler, S., Backert, S., & Rieder, G. (2012). Helicobacter pylori CagL-dependent induction of gastrin expression via a novel αvβ5-integrin-integrin linked kinase signaling complex. Gut, 61(7), 986–996.
Wu, S., Powell, J., Mathioudakis, N., Kane, S., Fernandez, E., & Sears, C. L. (2004). Bacteroides fragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infection and Immunity, 72, 5832–5839.
Wu, S., Powers, S., Zhu, W., & Hannun, Y. A. (2015). Substantial contribution of extrinsic risk factors to cancer development. Nature, 529, 43.
Wu, S., Rhee, K. J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H. R., Huso, D. L., Brancati, F. L., Wick, E., McAllister, F., et al. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Medicine, 15, 1016–1022.
Wu, S., Rhee, K. J., Zhang, M., Franco, A., & Sears, C. L. (2007). Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. Journal of Cell Science, 120, 1944–1952.
Xu, X., Liu, Z., Fang, M., Yu, H., Liang, X., Li, X., Liu, X., Chen, C., & Jia, J. (2012). Helicobacter pylori CagA induces ornithine decarboxylase upregulation via Src/MEK/ERK/c-Myc pathway: Implication for progression of gastric diseases. Experimental Biology and Medicine, 237(4), 435-441.
Ye, Z., Petrof, E. O., Boone, D., Claud, E. C., & Sun, J. (2007). Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. American Journal of Pathology, 171(3), 882–892.
View Dimensions
View Altmetric
Save
Citation
View
Share