EMAN RESEARCH PUBLISHING | <p>Efficacy of Egyptian Parasitic Nematodes, <em>Heterorhabditis bacteriophora</em> (BA1) and <em>Steinernema carpocapsae</em> (BA2) in Bio-control of Economically Important Pests</p>
MicroBio Pharmaceuticals and Pharmacology | Online ISSN 2209-2161
RESEARCH ARTICLE   (Open Access)

Efficacy of Egyptian Parasitic Nematodes, Heterorhabditis bacteriophora (BA1) and Steinernema carpocapsae (BA2) in Bio-control of Economically Important Pests

Mona A. Hussein

+ Author Affiliations

Microbial Bioactives 4(1) 150-155 https://doi.org/10.25163/microbbioacts.412140A0608151221

Submitted: 06 November 2021  Revised: 10 December 2021  Published: 12 December 2021 

Abstract

Background: Entomopathogenic nematodes (EPNs) are obligate lethal parasites of insects and are globally used as safe biocontrol agents against a wide range of insect pests. They occur in most agricultural soils all around the world. The insecticidal activity of two native EPNs Heterorhabditis bacteriophora (BA1) and Steinernema carpocapsae (BA2), isolated from the Egyptian soil was examined against eight different economic insect pests under laboratory conditions. These pests are the Greater wax moth larvae, Galleria mellonella; the cotton leafworm, Spodoptera littorallis; the cutworm, Agrotis ipsilon; the european corn borer, Osterinia nubilalis; the greater sugarcane borer, Sesamia critica; the apple tree borer, Zeuzera pyrina; the sugar beet fly, Pegomyia mixta and the tortoise beetle Cassida vittatta. Three nematode concentrations (100, 50, and 25 /ml water) of infective juveniles (IJs) were applied per insect. The test was conducted at 25± 2 °C and about 70± 2 % RH. Results: The median lethal concentration (LC50) of H. bacteriophora BA1– was almost– higher than that of S. capocapsae BA2 against the different tested insect pest larvae. The percentage of the cumulative mortality ranged between 46 and 100% in general, according to the tested concentration and/or the nematode species. The comparison between the mortality percentages caused by BA1 and BA2 nematodes to differently treated insect larvae revealed that BA1 was almost more virulent than BA2. Results showed that the lowest LC50 value was found to be 2.15 IJs, for H. bacteriophora BA1 isolate. Conclusions: The results showed that both indigenous EPNs isolates had a good impact in the management of the eight economic insect pests tested in this study had insecticidal properties and could be positively enrolled in integrated pest management programs against different insect pests.

Key Words: EPNsBiocontrol; Cutworms; Borers; Sugar beet pests

References

Abbott, W.S. (1925) A method for computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265-267.
https://doi.org/10.1093/jee/18.2.265a
 
Abdel-Razek A. S., Mona Hussein, Ibrahim Shehata (2018) Isolation and identification of indigenous entomopathogenic nematode (EPN) isolate from Egyptian fauna, Arch. Phytopathol. Plant Prot., 51:3-4, 197-206.
https://doi.org/10.1080/03235408.2018.1445080
 
Amutha, V., Vengateswari, G., Shivakumar; M. S. (2020). Entomopathogenecity of nematode Panagrolaimus spp. (Rhabditida: Panagrolaimidae) against lepidopteran pest Spodoptera litura. International J. Pest Manag. DOI: 10.1080/09670874.2020.1776415
https://doi.org/10.1080/09670874.2020.1776415
 
Bedding, R.A., Molyneux, A.S. & Akhurst, R.J., 1983. Heterorhabditis spp., Neoaplectana spp. and Steinernema kraussei: interspecific and intraspecific differences in infectivity for insects. Exp. Parasitol. 55, 249-257.
https://doi.org/10.1016/0014-4894(83)90019-X
 
Burnell, A. M, Stock, S. P ( 2000) Heterorhabdits, Steinernema and their bacterial symbionts - lethal pathogens of insect. Nematology 2:3142.
https://doi.org/10.1163/156854100508872
 
Duncan, DB (1965) Multiple range and multiple F-test. Biometrics, 11: 1-41.
https://doi.org/10.2307/3001478
 
Ehlers, R.-U. (2005) Forum on Safety and Regulation. In: Nematodes as Biocontrol Agents. (Grewal, P. S., Ehlers, R.-U. and Shapiro-Ilan, D. I. eds.), CABI Publishing, Wallingford, 107-114.
https://doi.org/10.1079/9780851990170.0107
 
El-Wakeil, N., Mona Hussein (2009) Field Performance of Entomopathogenic Nematodes and an Egg Parasitoid for Suppression of Corn Borers in Egypt. Arch. Phytopathol. Plant Prot., 42(3): 228-237.
https://doi.org/10.1080/03235400600999422
 
Feaster, M.A., Steinkrauss, D.C (1999) Inundative biological control of Helicoverpa zea (Lepidoptera: Noctuidae) with the entomopathogenic nematode Steinernema riobravis (Rhabditida: Steinernematidae). Biol. Control 7, 38-43.
https://doi.org/10.1006/bcon.1996.0061
 
Finney, D. J (1952) Probit Analysis. Cambridge, England, Cambridge University Press.
 
Glazer, I, Navon, A (1990). Activity and persistence of entomoparasitic nematodes tested against Heliothis armigera (Lepidoptera: Noctuidae). J. Econ. Entomol. 83, 1795-1800.
https://doi.org/10.1093/jee/83.5.1795
 
Glazer I, Galper S, Sharon E (1991) Virulence of the nematode (steinernematids and heterorhabditids)-bacteria (Xenorhabdus spp.) complex to the Egyptian cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 57, 94-100.
https://doi.org/10.1016/0022-2011(91)90045-R
 
Glazer I, Salame L, Goldenberg S, Blumberg D (1999) Susceptibility of Sap Beetles (Coleoptera: Nitidulidae) to Entomopathogenic Nematodes, Biocon. Sci. Technol., 9:2, 259-266, DOI: 10.1080/09583159929839
https://doi.org/10.1080/09583159929839
 
Griffin CT, Moore JF, Downes MJ (1991) Occurrence of insect parasitic nematodes (Steinernematidae, Hete-rorhabditidae) in the Republic of Ireland. Nematologica 37,92-100
https://doi.org/10.1163/187529291X00097
 
Hazir S, Kaya HK, Stock SP, Keskin N (2003) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk. J. Biol. 27, 181-202.
 
Hominick WM (2002) Biogeography. In: Gaugler, R. (Ed.), entomopathogenic Nematology. CABI Publishing, Wallingford, UK, pp. 115- 144.
https://doi.org/10.1079/9780851995670.0115

Hussein MA, El-Rahman RA, El-Boraey H, Hilmy M, Attya E (2018). The Impact of Cu Ion, Two Novel Schiff Base Ligands and their Copper (II) Complexes on the Biological Activity of the Entomopathogenic Nematodes. Microbial Bioactives, 1(2), 046-050
https://doi.org/10.25163/microbbioacts.12012A0512140918
 
Hussein Mona A., El-Mahdi Iman F S (2020) Artificial solid media for in-vitro mass production of two Egyptian nematodes. Bioscience Research 17(1):298-303
 
Hussein Mona A, El-Mahdi Iman F S (2019) Efficiency of three formulated entomopathogenic nematodes against the greenhouse onion thrips, Thrips tabaci under aquaculture system. J. Biopest., 12(1): 134-138.
 
Hussein Mona A, Abou El- Soud A B (2006) Isolation and characterization of two Heterorhabditids and one Steinernematid nematodes from Egypt. Int. J. Nematol., 16(1):7-12.
 
Hussein, Mona A.; Metwally, Hala M. S. & El-Raoaaf, M.A. (2015). Foliar Application of Native Bio-Formulated Entomopathogenic Nematodes against Diamondback Moth in Aquaponic Agriculture. Res. J. Pharma., Biologic. Chem. Sci., 6(6): 1030-1035.
 
Iraki N, Salah N, Sansour MA, Segal D, Glazer I, Johnigk SA, Hussein MA, Ehlers R.-U (2000) Isolation and characterization of two entomopathogenic nematode strains, Heterorhabditis indica (Nematoda, Rhaditida), from the west Bank, Palastinian Territories. J. App.Entomol., 124: 375-380.
https://doi.org/10.1046/j.1439-0418.2000.00450.x
 
Metwally Hala M, Hafez Gehan A, Hussein Mona A, Hussein MA, Salem HA, MM Saleh (2012) Low Cost Artificial Diet for Rearing the Greater Wax Moth, Galleria mellonella L. (Lepidoptera: Pyralidae) as a Host for Entomopathogenic Nematodes. Egypt. J. Biol. Pest. Control, 22(1): 15-17
 
Navon A, Ascher, K (2000) Bioassays of entomopathogenic microbes and nematodes. CAB Publishing, Wallingford.
https://doi.org/10.1079/9780851994222.0000
PMCid:PMC1550289
 
Nouh Gehan M, Hussein Mona A (2014) Virulence of Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) Produced in vitro Against Galleria mellonella (Lepidoptera: Pyralidae). Res. J. Pharma., Biologic. Chem. Sci., 5(3): 1385-93
 
Saleh MME, Draz KAA, Mansour MA, Mona A Hussein, Zawrah MFM (2009) Controlling the sugar beet weevil Cassida vittata with entomopathogenic nematodes. J. Pest Sci., 82: 289-294.
https://doi.org/10.1007/s10340-009-0253-1
 
West RJ, Vrain TC (1997) Nematode control of black army cutworm (Lepidoptera: Noctuidae) under laboratory and field conditions. Canadian Entomol., 129, 229-239.
https://doi.org/10.4039/Ent129229-2
 
White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66: 302-303.
https://doi.org/10.1126/science.66.1709.302.b
PMid:17749713
 
Williams CD, Dillon AB, Ennis D, Hennessy R, Griffin C (2015) Differential susceptibility of pine weevil, Hylobius abietis (Coleoptera: Curculionidae), larvae and pupae to entomopathogenic nematodes and death of adults infected as pupae. BioControl, 8
https://doi.org/10.1007/s10526-015-9658-3
 
Yuksel E, Canhilal R (2018) Evaluation of local isolates of entomopathogenic nematodes for the management of black cutworm, Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae). Egypt J Biol Pest Control 28, 82. https://doi.org/10.1186/s41938-018-0087-3

Committee on Publication Ethics

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



11
Save
0
Citation
358
View
1
Share