EMAN RESEARCH PUBLISHING | <p>A Simple and Alternative UV Spectrometric Method for the Estimation of Vitamin D3 </p>
Microbial and anti-microbial compound biology
RESEARCH ARTICLE   (Open Access)

A Simple and Alternative UV Spectrometric Method for the Estimation of Vitamin D3 

Asma Rahman A, Md. Mahbubur Rahman B, Mohammad Shahnoor Hossain C, Md. Sarowar Jahan D, Noor Jahan Akter E and Md. Latiful Bari A

+ Author Affiliations

Microbial Bioactives 2(1) 098-105 https://doi.org/10.25163/microbbioacts.212086A2127261219

Submitted: 21 August 2019  Revised: 27 November 2019  Published: 26 December 2019 

Abstract

Background. A simple, rapid, accurate, precise, and economic spectrophotometric methods for estimation of vitamin D in from food, feed, pharmaceutical and environmental samples have been developed. Method. Vitamin D has absorbance maximums at 265.0 nm, so absorbance was measured at the same wave length for the estimation of vitamin D. Absorbance is measured at 275.0 nm. This drug obeys the Beer Lambert's law in the concentration range of 12 to 315 ng/mL. Methods are validated according to ICH guidelines and can be adopted for the routine analysis of vitamin D from food and drug samples. Results. This method offers a very simple procedure, avoids aggressive sample treatments, excellent determination coefficient (r2) value of 0.999. The average percentage of relative standard deviation (% RSD) for intra- and inter- day precision was found to be 0.14% and 0.13%, respectively. The average percentage of recovery was found to be 100.88%, hence, simple, cost effective, provided better precision and accuracy. Conclusion. Thus, this method could be applicable in accurate estimation of routine analysis of vitamin D from food, feed, pharmaceutical and environmental samples in food and drug industry.

Keywords: UV spectrometry, vitamin D, food, pharmaceutical, clinical, and environment.

Abbreviations: HPLC, high performance liquid chromatography; RIA, radioimmunoassay; LC-MS/MS, Liquid chromatography- tandem mass spectrometry; ELISA, enzyme-linked immunoassay; CLIA, chemiluminescent linked immunoassay; and ECL, electro-chemiluminescent; LLE, liquid-liquid extraction; and SPE, solid phase extraction; KOH, potassium hydroxide.

References

A.K., K. S. C. D. a. T. (2015). An Improved and Sensitive Method for Vitamin D3 Estimation by RPHPLC. Pharmaceutica Anal. Acta, 6(8), 410.

Al-Hendy, A., Diamond, M. P., Boyer, T. G., & Halder, S. K. (2016). Vitamin D3 Inhibits Wnt/beta-Catenin and mTOR Signaling Pathways in Human Uterine Fibroid Cells. J Clin Endocrinol Metab, 101(4), 1542-1551. doi:10.1210/jc.2015-3555

Al-Jaderi, Z., & Maghazachi, A. A. (2013). Effects of vitamin D3, calcipotriol and FTY720 on the expression of surface molecules and cytolytic activities of human natural killer cells and dendritic cells. Toxins (Basel), 5(11), 1932-1947. doi:10.3390/toxins5111932

Alhassan Mohammed, H., Mirshafiey, A., Vahedi, H., Hemmasi, G., Moussavi Nasl Khameneh, A., Parastouei, K., & Saboor-Yaraghi, A. A. (2017). Immunoregulation of Inflammatory and Inhibitory Cytokines by Vitamin D3 in Patients with Inflammatory Bowel Diseases. Scand J Immunol, 85(6), 386-394. doi:10.1111/sji.12547

Arboleda Alzate, J. F., Rodenhuis-Zybert, I. A., Hernandez, J. C., Smit, J. M., & Urcuqui-Inchima, S. (2017). Human macrophages differentiated in the presence of vitamin D3 restrict dengue virus infection and innate responses by downregulating mannose receptor expression. PLoS Negl Trop Dis, 11(10), e0005904. doi:10.1371/journal.pntd.0005904

Bartels, L. E., Jorgensen, S. P., Bendix, M., Hvas, C. L., Agnholt, J., Agger, R., & Dahlerup, J. F. (2013). 25-Hydroxy vitamin D3 modulates dendritic cell phenotype and function in Crohn's disease. Inflammopharmacology, 21(2), 177-186. doi:10.1007/s10787-012-0168-y

Berg, V. H., Boshuis, P. G., Schreurs, W. H. (1986). Determination of vitamin D in fortified and nonfortified milk powder and infant formula using a specific radioassay after purification by high-performance liquid chromatography. J Agric Food Chem, 34(2), 264-8.

BIPM/IEC/IFCC/ISO/IUPAC/IUPAP/OIML: Guide to the expression of uncertainty in measurement. (1995.).

Boontanrart, M., Hall, S. D., Spanier, J. A., Hayes, C. E., & Olson, J. K. (2016). Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism. J Neuroimmunol, 292, 126-136. doi:10.1016/j.jneuroim.2016.01.015

Bosetti, M., Sabbatini, M., Calarco, A., Borrone, A., Peluso, G., & Cannas, M. (2016). Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging. J Bone Miner Metab, 34(1), 65-78. doi:10.1007/s00774-014-0642-2

Chen, J., Dosier, C. R., Park, J. H., De, S., Guldberg, R. E., Boyan, B. D., & Schwartz, Z. (2016). Mineralization of three-dimensional osteoblast cultures is enhanced by the interaction of 1alpha,25-dihydroxyvitamin D3 and BMP2 via two specific vitamin D receptors. J Tissue Eng Regen Med, 10(1), 40-51. doi:10.1002/term.1770

De Beer, J. O., Baten, P., Nsengyumva, C., & Smeyers-Verbeke, J. . (2003). Measurement uncertainty from validation and duplicate analysis results in HPLC analysis of multivitamin preparations and nutrients with different galenic forms. . Journal of pharmaceutical and biomedical analysis., 32(4-5), 767-811.

Demchenko, D. V., Pozharitskaya, O. N., Shikov, A. N., Makarov, V. G. (2011). Validated HPTLC method for quantification of vitamin D3 in fish oil. J Planar Chromat, 24, 487-90.

Glendenning, P., Taranto, M., Noble, J. M., Musk, A. A., Hammond, C., Goldswain, P. R., . . . Vasikaran, S. D. (2006). Current assays overestimate 25-hydroxyvitamin D3 and underestimate 25-hydroxyvitamin D2 compared with HPLC: need for assay-specific decision limits and metabolite-specific assays. Ann Clin Biochem, 43(Pt 1), 23-30. doi:10.1258/000456306775141650

Gomes, F. .P, Shaw, P. N., Karen, W., Pieter, K., Hewavitharana, A. K. (2013). Recent trends in the determination of vitamin D. Bioanalysis, 5(24), 3063-78.

H, P., O, C., Da, U., O, G., & Ng, D. (2013). The impact of Vitamin D Replacement on Glucose Metabolism. Pak J Med Sci, 29(6), 1311-1314.

Heijboer, A.C., Blankenstein, M. A., Kema, I. P., Buijs, M. M. (2012). Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin Chem, 58(3), 543-8.

Hewavitharana, A. K., Tan, S. K., Shaw, P. N. (2014). Strategies for the detection and elimination of matrix effects in quantitative LC-MS analysis. LCGC North America, 32(1), 54-64.

 Holick, M. F. (2002). Sunlight and vitamin D: both good for cardiovascular health. J Gen Intern Med, 17(9), 733-735.

Hu, X. T., & Zuckerman, K. S. (2014). Role of cell cycle regulatory molecules in retinoic acid- and vitamin D3-induced differentiation of acute myeloid leukaemia cells. Cell Prolif, 47(3), 200-210. doi:10.1111/cpr.12100

Hunten, S., & Hermeking, H. (2015). p53 directly activates cystatin D/CST5 to mediate mesenchymal-epithelial transition: a possible link to tumor suppression by vitamin D3. Oncotarget, 6(18), 15842-15856. doi:10.18632/oncotarget.4683

Jamka, M., Wozniewicz, M., Jeszka, J., Mardas, M., Bogdanski, P., & Stelmach-Mardas, M. (2015). The effect of vitamin D supplementation on insulin and glucose metabolism in overweight and obese individuals: systematic review with meta-analysis. Sci Rep, 5, 16142. doi:10.1038/srep16142

Japelt, R. B., & Jakobsen, J. (2013). Vitamin D in plants: a review of occurrence, analysis, and biosynthesis. Front Plant Sci, 4, 136. doi:10.3389/fpls.2013.00136

Japelt, R. B., Silvestro, D., Smedsgaard, J., Jensen, P. E., Jakobsen, J. (2011). LC–MS/MS with atmospheric pressure chemical ionisation to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants. Food Chemisty, 129(1), 217-25.

Kienen, V., Costa, W. F., Visentainer, J. V., Souza, N. E., Oliveira, C. C. (2008). Development of a green chromatographic method for determination of fat-soluble vitamins in food and pharmaceutical supplement. Talanta, 75(1), 141-6.

Lopez-Sobaler, A. M., Aparicio, A., Gonzalez-Rodriguez, L. G., Cuadrado-Soto, E., Rubio, J., Marcos, V., . . . Ortega, R. M. (2017). Adequacy of Usual Vitamin and Mineral Intake in Spanish Children and Adolescents: ENALIA Study. Nutrients, 9(2). doi:10.3390/nu9020131

Malabanan, A., Veronikis, I. E., & Holick, M. F. (1998). Redefining vitamin D insufficiency. Lancet, 351(9105), 805-806.

Mata-Granados, J. M., Quesada Gomez, J. M., & Luque de Castro, M. D. (2009). Fully automatic method for the determination of fat soluble vitamins and vitamin D metabolites in serum. Clin Chim Acta, 403(1-2), 126-130. doi:10.1016/j.cca.2009.01.029

Ovesen, L., Andersen, R., & Jakobsen, J. (2003). Geographical differences in vitamin D status, with particular reference to European countries. Proc Nutr Soc, 62(4), 813-821. doi:10.1079/PNS2003297

Paixao, J., Stamford, T. (2002). A single guide for extraction and quantification of fat-soluble vitamins. Journal of Liquid Chromatography and Related Technologies. Lacteal matrices, 25(2), 217-39.

Perales, S., Alegria, A., Barbera, R., Farre, R. (2005). Review: determination of vitamin D in dairy products by high performance liquid chromatography. Food Science and Technology International, 11(6), 451-62.

Qian, H., Sheng, M. (1998). Simultaneous determination of fat-soluble vitamins A, D and E and pro-vitamin D2 in animal feeds by one-step extraction and high-performance liquid chromatography analysis. J Chromatogr A, 825(2), 127-33.

Qi, Y., Geib, T., Schorr, P., Meier, F., Volmer, DA. (2015). On the isobaric space of 25-hydroxyvitamin D in human serum: potential for interferences in liquid chromatography/tandem mass spectrometry, systematic errors and accuracy issues. Rapid Commun Mass Spectrom, 29(1), 1-9.

Santos, J. M., Khan, Z. S., Munir, M. T., Tarafdar, K., Rahman, S. M., & Hussain, F. (2017). Vitamin D3 decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J Nutr Biochem, 53, 111-120. doi:10.1016/j.jnutbio.2017.10.013

Thompson, J., Hatina, G., Maxwell, W., Duval, S. (1982). High performance liquid chromatographic determination of vitamin D in fortified milks, margarine, and infant formulas. Journal-Association of Official Analytical Chemists, 65(3), 624-31.

Thompson, J., Maxwell, W., Labbe, M. (1977). High pressure liquid chromatographic determination of vitamin D in fortified milk. Journal-Association of Official Analytical Chemists, 60(5), 998-1002.

Trenerry, V. C., Plozza, T., Caridi, D., Murphy, S. (2011). The determination of vitamin D3 in bovine milk by liquid chromatography mass spectrometry. Food Chemisty, 125, 1314-9.

Turpeinen, U., Hohenthal, U., & Stenman, U. H. (2003). Determination of 25-hydroxyvitamin D in serum by HPLC and immunoassay. Clin Chem, 49(9), 1521-1524.

Volmer, D. A. (2015). Analysis of vitamin D metabolic markers by mass spectrometry: Current techniques, limitations of the “gold standard” method, and anticipated future directions. Mass Spectrom Rev, 34(1), 2-23.

Wacker, M., & Holick, M. F. (2013). Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol, 5(1), 51-108. doi:10.4161/derm.24494

Committee on Publication Ethics

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



116
Save
0
Citation
1294
View
4
Share