Genomic Fingerprinting Using Highly Repetitive Sequences to Differentiate Close Cyanobacterial Strains
Rezvan Shokraei a, Hossein Fahimi a, Saúl Blanco b, Bahareh Nowruzi c*
Microbial Bioactives 2(1) 068-075 https://doi.org/10.25163/microbbioacts.21015A2624310119
Submitted: 12 December 2018 Revised: 31 January 2019 Published: 24 January 2019
Abstract
Background: Cyanobacterial taxonomy has experimented considerable changes due to the exploration of previously uninvestigated regions as well as the introduction of molecular tools. Challenges arose when strains collected from agricultural areas, salt waters and dry limestone did not reveal remarkable morphological differences and had a high level of similarity in the phylogeny of 16S rDNA gene sequences. The aim of the present investigation was to fingerprint members of the genera Calothrix and Nostoc based on the repetitive DNA sequences, as molecular markers for the detection of phylogenetic affinities and molecular diversity. Methods: In this research, through a polyphasic approach, the differences in morphological and genotypic features of different strains were investigated. Bacteria free cyanobacterial clones were prepared followed by morphological characterization, genomic DNA extraction and PCR with 16S rRNA, ERIC, STRR1a and HIP primers. Then the phylogenetic analyses of partial 16S rRNA genes and fingerprints were performed. Results: The results showed each marker producing unique and strain-specific banding pattern, thus highlighting the efficiency of this technique in the assessment of proximity between closely related cyanobacterial strains isolated from different climatic/geographic regions and habitats. Conclusions: This case is the first documented genomic fingerprinting from seven close cyanobacterial strains in Iran.
Keywords: Fingerprinting, Repetitive DNA fragments, Enterobacterial repetitive intergenic consensus (ERIC), Highly iterated palindrome, Close cyanobacteria.
References
Abony, M., Banik A., Shishir M. A., Akter N. J., Uddin M. E., Datta S. (2018). Physico-chemical Characterization of Indigenous Streptomyces and Influence of pH on Antimicrobial Activity. Microbial Bioactives, 1(2), 059-067.
https://doi.org/10.25163/microbbioacts.12009A3010021118
Akoijam, C., & Singh, A. K. (2011). Molecular typing and distribution of filamentous heterocystous cyanobacteria isolated from two distinctly located regions in North-Eastern India. World Journal of Microbiology and Biotechnology, 27(9), 2187-2194.
https://doi.org/10.1007/s11274-011-0684-8
Cavalier-Smith, T. (2002). The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International journal of systematic and evolutionary microbiology, 52(2), 297-354.
https://doi.org/10.1099/00207713-52-2-297
PMid:11931142
Delaye, L., & Moya, A. (2011). Abundance and distribution of the highly iterated palindrome 1 (HIP1) among prokaryotes. Mobile Genetic Elements, 1(3), 159-168.
https://doi.org/10.4161/mge.1.3.18300
PMid:22312590 PMCid:PMC3271550
Desikachary, T.V. Cyanophyta, (Indian Council of Agricultural Research New Delhi, 1959).
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.
https://doi.org/10.1093/nar/gkh340
PMid:15034147 PMCid:PMC390337
Elhai, J. (2015). Highly Iterated Palindromic sequences (HIPs) and their relationship to DNA methyltransferases. Life, 5(1), 921-948.
https://doi.org/10.3390/life5010921
PMid:25789551 PMCid:PMC4390886
Ezhilarasi, A., & An, N. (2010). Fingerprinting of repetitive DNA sequences in the genus Anabaena using PCR-based techniques. African Journal of Microbiology Research, 4(8), 590-597.
Gould, S. B., Waller, R. F., & McFadden, G. I. (2008). Plastid evolution. Annual Review of Plant Biology, 59, 491-517.
https://doi.org/10.1146/annurev.arplant.59.032607.092915
PMid:18315522
Gugger, M. F., & Hoffmann, L. (2004). Polyphyly of true branching cyanobacteria (Stigonematales). International Journal of Systematic and Evolutionary Microbiology, 54(2), 349-357.
https://doi.org/10.1099/ijs.0.02744-0
PMid:15023942
Helm, R. F., Huang, Z., Edwards, D., Leeson, H., Peery, W., & Potts, M. (2000). Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc communeDRH-1. Journal of Bacteriology, 182(4), 974-982.
https://doi.org/10.1128/JB.182.4.974-982.2000
PMid:10648523 PMCid:PMC94373
Hill, D. R., Peat, A., & Potts, M. (1994). Biochemistry and structure of the glycan secreted by desiccation-tolerantNostoc commune (Cyanobacteria). Protoplasma, 182(3-4), 126-148.
https://doi.org/10.1007/BF01403474
Howard-Azzeh, M., Shamseer, L., Schellhorn, H. E., & Gupta, R. S. (2014). Phylogenetic analysis and molecular signatures defining a monophyletic clade of heterocystous cyanobacteria and identifying its closest relatives. Photosynthesis Research, 122(2), 171-185.
https://doi.org/10.1007/s11120-014-0020-x
PMid:24917519
Iteman, I., Rippka, R., de Marsac, N. T., & Herdman, M. (2002). rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira. Microbiology, 148(2), 481-496.
https://doi.org/10.1099/00221287-148-2-481
PMid:11832512
Kaushik, P., Chauhan, A., Chauhan, G., & Goyal, P. (2009). Antibacterial potential and UV-HPLC analysis of laboratory-grown culture of Anabaena variabilis. International Journal of Food Safety, 11, 11-18.
Komárek J and Johansen JR. (2014) Filamentous cyanobacteria. In Freshwater Algae of North America (Second Edition). Elsevier, pp. 135-235.
Komárek, J. (2010). Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia, 639(1), 245-259.
https://doi.org/10.1007/s10750-009-0031-3
Komárek J. (2013): Cyanoprokaryota. 3. Heterocytous genera. – In: Büdel B., Gärtner G., Krienitz L. & Schagerl M. (eds), Süswasserflora von Mitteleuropa/Freshwater flora of Central Europe, p. 1130, Springer Spektrum Berlin, Heidelberg.
Laguerre, G., Mavingui, P., Allard, M. R., Charnay, M. P., Louvrier, P., Mazurier, S. I., ... & Amarger, N. (1996). Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology, 62(6), 2029-2036.
PMid:8787401 PMCid:PMC167981
Liaimer, A., Jensen, J. B., & Dittmann, E. (2016). A genetic and chemical perspective on symbiotic recruitment of cyanobacteria of the genus Nostoc into the host plant Blasia pusilla L. Frontiers in Microbiology, 7, 1693.
https://doi.org/10.3389/fmicb.2016.01693
Lyra, C., Laamanen, M., Lehtimäki, J. M., Surakka, A., & Sivonen, K. (2005). Benthic cyanobacteria of the genus Nodularia are non-toxic, without gas vacuoles, able to glide and genetically more diverse than planktonic Nodularia. International Journal of Systematic and Evolutionary Microbiology, 55(2), 555-568.
https://doi.org/10.1099/ijs.0.63288-0
PMid:15774625
Muralitharan, G., & Thajuddin, N. (2011). Rapid differentiation of phenotypically and genotypically similar Synechococcus elongatus strains by PCR fingerprinting. Biologia, 66(2), 238-243.
https://doi.org/10.2478/s11756-011-0003-8
Neilan, B. A., Saker, M. L., Fastner, J., Törökné, A., & Burns, B. P. (2003). Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Molecular Ecology, 12(1), 133-140.
https://doi.org/10.1046/j.1365-294X.2003.01709.x
PMid:12492883
Nguyen, L. T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2014). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274.
https://doi.org/10.1093/molbev/msu300
PMid:25371430 PMCid:PMC4271533
Nilsson, M., Bergman, B., & Rasmussen, U. (2000). Cyanobacterial diversity in geographically related and distant host plants of the genus Gunnera. Archives of Microbiology, 173(2), 97-102.
https://doi.org/10.1007/s002039900113
PMid:10795680
Nowruzi, B., Khavari-Nejad, R. A., Sivonen, K., Kazemi, B., Najafi, F., & Nejadsattari, T. (2012). Identification and toxigenic potential of a Nostoc sp. Algae, 27(4), 303-313.
https://doi.org/10.4490/algae.2012.27.4.303
Nowruzi, B., & Blanco, S. (2019). In silico identification and evolutionary analysis of candidate genes involved in the biosynthesis methylproline genes in cyanobacteria strains of Iran. Phytochemistry Letters, 29, 199-211.
https://doi.org/10.1016/j.phytol.2018.12.011
Nowruzi, B., Blanco, S., & Nejadsattari, T. (2018). Chemical and Molecular Evidences for the Poisoning of a Duck by Anatoxin-a, Nodularin and Cryptophycin at the Coast of Lake Shoormast (Mazandaran Province, Iran). International Journal on Algae, 20(4).
https://doi.org/10.1615/InterJAlgae.v20.i4.30
Orcutt, K. M., Rasmussen, U., Webb, E. A., Waterbury, J. B., Gundersen, K., & Bergman, B. (2002). Characterization of Trichodesmium spp. by genetic techniques. Applied and Environmental Microbiology, 68(5), 2236-2245.
https://doi.org/10.1128/AEM.68.5.2236-2245.2002
PMid:11976093 PMCid:PMC127538
Prabina, B. J., Kumar, K., & Kannaiyan, S. (2005). DNA amplification fingerprinting as a tool for checking genetic purity of strains in the cyanobacterial inoculum. World Journal of Microbiology and Biotechnology, 21(5), 629-634.
https://doi.org/10.1007/s11274-004-3566-5
Prasanna, R., Kumar, R., Sood, A., Prasanna, B. M., & Singh, P. K. (2006). Morphological, physiochemical and molecular characterization of Anabaena strains. Microbiological Research, 161(3), 187-202.
https://doi.org/10.1016/j.micres.2005.08.001
PMid:16765835
Prasanna, R., Babu, S., Rana, A., Kabi, S. R., Chaudhary, V., Gupta, V., ... & Pal, R. K. (2013). Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat–rice cropping sequence. Experimental Agriculture, 49(3), 416-434.
https://doi.org/10.1017/S001447971200107X
Rasmussen, U., & Svenning, M. M. (1998). Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Applied and Environmental Microbiology, 64(1), 265-272.
PMid:16349487 PMCid:PMC124704
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61.
https://doi.org/10.1099/00221287-111-1-1
Rodriguez-Barradas, M. C., Hamill, R. J., Houston, E. D., Georghiou, P. R., Clarridge, J. E., Regnery, R. L., & Koehler, J. E. (1995). Genomic fingerprinting of Bartonella species by repetitive element PCR for distinguishing species and isolates. Journal of Clinical Microbiology, 33(5), 1089-1093.
PMid:7615711 PMCid:PMC228110
Sánchez-Baracaldo, P., Ridgwell, A., & Raven, J. A. (2014). A neoproterozoic transition in the marine nitrogen cycle. Current Biology, 24(6), 652-657.
https://doi.org/10.1016/j.cub.2014.01.041
PMid:24583016
Schirrmeister, B. E., Gugger, M., & Donoghue, P. C. (2015). Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology, 58(5), 769-785.
https://doi.org/10.1111/pala.12178; https://doi.org/10.1111/pala.12193
PMid:26924853 PMCid:PMC4755140
Selvakumar, G., & Gopalaswamy, G. (2008). PCR based fingerprinting of Westiellopsis cultures with short tandemly repeated repetitive (STRR) and highly iterated palindrome (HIP) sequences. Biologia, 63(3), 283-288.
https://doi.org/10.2478/s11756-008-0065-4
Shih, P. M., Wu, D., Latifi, A., Axen, S. D., Fewer, D. P., Talla, E., Herdman, M. (2013). Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences, 110(3), 1053-1058.
https://doi.org/10.1073/pnas.1217107110
PMid:23277585 PMCid:PMC3549136
Shirkey, B., McMaster, N. J., Smith, S. C., Wright, D. J., Rodriguez, H., Jaruga, P., ... & Potts, M. (2003). Genomic DNA of Nostoc commune (Cyanobacteria) becomes covalently modified during long-term (decades) desiccation but is protected from oxidative damage and degradation. Nucleic Acids Research, 31(12), 2995-3005.
https://doi.org/10.1093/nar/gkg404
PMid:12799425 PMCid:PMC162238
Shishir, M. A., Pervin, S., Sultana, M., Khan, S. N., & Hoq, M. M. (2015). Genetic Diversity of Indigenous Bacillus thuringiensis Strains by RAPD-PCR to Combat Pest Resistance. Bt Research, 6(8), 1–16.
https://doi.org/10.5376/bt.2015.06.0008
Smith, J. K., Parry, J. D., Day, J. G., & Smith, R. J. (1998). A PCR technique based on the Hipl interspersed repetitive sequence distinguishes cyanobacterial species and strains. Microbiology, 144(10), 2791-2801.
https://doi.org/10.1099/00221287-144-10-2791
PMid:9802020
Taton, A., Grubisic, S., Brambilla, E., De Wit, R., & Wilmotte, A. (2003). Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Applied and Environmental Microbiology, 69(9), 5157-5169.
https://doi.org/10.1128/AEM.69.9.5157-5169.2003
PMid:12957897 PMCid:PMC194958
Teaumroong, N., Innok, S., Chunleuchanon, S., & Boonkerd, N. (2002). Diversity of nitrogen-fixing cyanobacteria under various ecosystems of Thailand: I. Morphology, physiology and genetic diversity. World Journal of Microbiology and Biotechnology, 18(7), 673-682.
https://doi.org/10.1023/A:1016812116538
Thajuddin, N., Muralitharan, G., Sundaramoorthy, M., Ramamoorthy, R., Ramachandran, S., Akbarsha, M. A., & Gunasekaran, M. (2010). Morphological and genetic diversity of symbiotic cyanobacteria from cycads. Journal of Basic Microbiology, 50(3), 254-265.
https://doi.org/10.1002/jobm.200900343
PMid:20473963
Uyeda, J. C., Harmon, L. J., & Blank, C. E. (2016). A comprehensive study of cyanobacterial morphological and ecological evolutionary dynamics through deep geologic time. PloS One, 11(9), e0162539.
https://doi.org/10.1371/journal.pone.0162539
PMid:27649395 PMCid:PMC5029880
Valerio, E., Chambel, L., Paulino, S., Faria, N., Pereira, P., & Tenreiro, R. (2009). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. Microbiology, 155(2), 642-656.
https://doi.org/10.1099/mic.0.022848-0
PMid:19202113
Walter, J. M., Coutinho, F. H., Dutilh, B. E., Swings, J., Thompson, F. L., & Thompson, C. C. (2017). Ecogenomics and taxonomy of Cyanobacteria phylum. Frontiers in Microbiology, 8, 2132.
https://doi.org/10.3389/fmicb.2017.02132
Wilson, K. M., Schembri, M. A., Baker, P. D., & Saint, C. P. (2000). Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR. Applied and Environmental Microbiology, 66(1), 332-338.
https://doi.org/10.1128/AEM.66.1.332-338.2000
PMid:10618244 PMCid:PMC91826
Zheng, W. W., Nilsson, M., Bergman, B., & Rasmussen, U. (1999). Genetic diversity and classification of cyanobacteria in different Azolla species by the use of PCR fingerprinting. Theoretical and Applied Genetics, 99(7-8), 1187-1193.
https://doi.org/10.1007/s001220051323
Zheng, W., Song, T., Bao, X., Bergman, B., & Rasmussen, U. (2002). High cyanobacterial diversity in coralloid roots of cycads revealed by PCR fingerprinting. FEMS Microbiology Ecology, 40(3), 215-222.
https://doi.org/10.1111/j.1574-6941.2002.tb00954.x
PMid:19709229
View Dimensions
View Altmetric
Save
Citation
View
Share