Bionanotechnology, Drug Delivery, Therapeutics | online ISSN 3064-7789
RESEARCH ARTICLE   (Open Access)

Treatment of Intimal Hyperplasia with The Targeted Delivery of Lipid Nanoparticles Ex Vivo

Saba Niaz 1*, Guillaume Bastiat Partner 1, Patrick Saulnier 1

+ Author Affiliations

Biosensors and Nanotheranostics 3(1) 1-8 https://doi.org/10.25163/biosensors.317338

Submitted: 22 January 2024  Revised: 19 March 2024  Published: 25 March 2024 

Abstract

Background: Lipid nanocapsules (LNCs) have gained attention as a promising strategy for developing innovative drug release systems aimed at treating intimal hyperplasia. These systems allow for the localized and sustained release of both hydrophilic and lipophilic drugs, while minimizing disruption to the normal healing process. Despite their potential, the pharmacological capabilities of LNCs in addressing cardiovascular pathologies remain underexplored. Methods: In this study, we investigated novel LNC formulations with varying surface properties by incorporating different concentrations of Span® 80. The aim was to assess the impact of these formulations on the interaction of LNCs with tissues. LNCs were characterized based on their average size, polydispersity index (pdI), and zeta potential, with Span compositions of 0, 0.14, and 0.27 (w/wLNC). Results: The characterization of LNCs revealed consistent and reproducible sizes, pdI values, and zeta potentials across all formulations. Ex vivo experiments demonstrated that the LNC formulation containing a Span composition of 0.27 (w/wLNC) showed the fastest and highest levels of interaction with tissues throughout the incubation period. Conclusion: The study highlights the potential of LNCs with tailored surface properties as a significant advancement in targeted drug delivery for cardiovascular pathologies. The findings suggest that such formulations can offer reduced toxicity and precise control over drug release kinetics, paving the way for optimized therapeutic efficacy and minimized adverse effects. Continued research in this area could lead to transformative treatments for intimal hyperplasia and related conditions.

Keywords: Intimal Hyperplasia, Lipid Nanocapsules, Vascular Smooth Muscle Cells, Targeted Drug Delivery, Span 80, ex vivo blood vessels

References

Béduneau, A., Saulnier, P., Hindré, F., Clavreul, A., Leroux, J.-C., & Benoit, J.-P. (2007). Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments. Biomaterials, 28(33), 4978–4990. https://doi.org/10.1016/j.biomaterials.2007.05.014

Bhargava, B., Reddy, N. K., Karthikeyan, G., Raju, R., Mishra, S., Singh, S., Waksman, R., Virmani, R., & Somaraju, B. (2006). A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: Evaluation in a porcine model. Catheterization and Cardiovascular Interventions, 67(5), 698–702. https://doi.org/10.1002/ccd.20698

Brito, L., & Amiji, M. (2007). Nanoparticulate carriers for the treatment of coronary restenosis. International Journal of Nanomedicine, 2(2), 143–161. https://www.ncbi.nlm.nih.gov/pubmed/17722543

Chakraborty, R., Chatterjee, P., Dave, J. M., Ostriker, A. C., Greif, D. M., Rzucidlo, E. M., & Martin, K. A. (2021). Targeting smooth muscle cell phenotypic switching in vascular disease. JVS Vascular Science, 2(2), 79–94. https://doi.org/10.1016/j.jvssci.2021.04.001

Déglise, S., Bechelli, C., & Allagnat, F. (2022). Vascular smooth muscle cells in intimal hyperplasia, an update. Frontiers in Physiology, 13, 1081881. https://doi.org/10.3389/fphys.2022.1081881

Farb, A., Weber, D. K., Kolodgie, F. D., Burke, A. P., & Virmani, R. (2002). Morphological predictors of restenosis after coronary stenting in humans. Circulation, 105(25), 2974–2980. https://doi.org/10.1161/01.cir.0000019071.72887.bd

Fowkes, F. G. R., Rudan, D., Rudan, I., Aboyans, V., Denenberg, J. O., McDermott, M. M., Norman, P. E., Sampson, U. K. A., Williams, L. J., Mensah, G. A., & Criqui, M. H. (2013). Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet, 382(9901), 1329–1340. https://doi.org/10.1016/S0140-6736(13)61249-0

Groo, A.-C., Matougui, N., Umerska, A., & Saulnier, P. (2018). Reverse micelle-lipid nanocapsules: A novel strategy for drug delivery of the plectasin derivative AP138 antimicrobial peptide. International Journal of Nanomedicine, 13, 7565–7574. https://doi.org/10.2147/IJN.S180040

Heurtault, B., Saulnier, P., Pech, B., Proust, J.-E., & Benoit, J.-P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharmaceutical Research, 19(6), 875–880. https://doi.org/10.1023/a:1016121319668

Hirsjärvi, S., Bastiat, G., Saulnier, P., & Benoît, J.-P. (2012). Evaluation of surface deformability of lipid nanocapsules by drop tensiometer technique, and its experimental assessment by dialysis and tangential flow filtration. International Journal of Pharmaceutics, 434(1-2), 460–467. https://doi.org/10.1016/j.ijpharm.2012.06.019

Huynh, N. T., Passirani, C., Saulnier, P., & Benoit, J. P. (2009). Lipid nanocapsules: A new platform for nanomedicine. International Journal of Pharmaceutics, 379(2), 201–209. https://doi.org/10.1016/j.ijpharm.2009.04.026

Li, Y., Tellez, A., Rousselle, S. D., Dillon, K. N., Garza, J. A., Barry, C., & Granada, J. F. (2016). Biological effect on drug distribution and vascular healing via paclitaxel-coated balloon technology in drug eluting stent restenosis swine model. Catheterization and Cardiovascular Interventions, 88(1), 89–98. https://doi.org/10.1002/ccd.26278

Matougui, N., Boge, L., Groo, A.-C., Umerska, A., Ringstad, L., Bysell, H., & Saulnier, P. (2016). Lipid-based nanoformulations for peptide delivery. International Journal of Pharmaceutics, 502(1-2), 80–97. https://doi.org/10.1016/j.ijpharm.2016.02.019

Melnik, T., Jordan, O., Corpataux, J.-M., Delie, F., & Saucy, F. (2022). Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. Pharmacology & Therapeutics, 235, 108157. https://doi.org/10.1016/j.pharmthera.2022.108157

Minkov, I., Ivanova, T., Panaiotov, I., Proust, J., & Saulnier, P. (2005). Reorganization of lipid nanocapsules at air–water interface: I. Kinetics of surface film formation. Colloids and Surfaces B: Biointerfaces, 45(1), 14–23. https://doi.org/10.1016/j.colsurfb.2005.03.009

Mylonaki, I., Allain, E., Strano, F., Allémann, E., Corpataux, J.-M., Meda, P., Jordan, O., Delie, F., Rougemont, A.-L., Haefliger, J.-A., & Saucy, F. (2018). Evaluating intimal hyperplasia under clinical conditions. Interactive CardioVascular and Thoracic Surgery, 27(3), 427–436. https://doi.org/10.1093/icvts/ivy101

Nemenoff, R. A., Simpson, P. A., Furgeson, S. B., Kaplan-Albuquerque, N., Crossno, J., Garl, P. J., Cooper, J., & Weiser-Evans, M. C. M. (2008). Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell–derived factor-1α. Circulation Research, 102(9), 1036–1045. https://doi.org/10.1161/CIRCRESAHA.107.169896

Palazzo, C., Karim, R., Evrard, B., & Piel, G. (2016). Drug delivery nanocarriers to cross the blood-brain barrier. In Nanobiomaterials in Brain Diseases (pp. 333-370). Elsevier. https://doi.org/10.1016/B978-0-323-42866-8.00001-0

Umerska, A., Matougui, N., Groo, A.-C., & Saulnier, P. (2016). Understanding the adsorption of salmon calcitonin, antimicrobial peptide AP114 and polymyxin B onto lipid nanocapsules. International Journal of Pharmaceutics, 506(1-2), 191–200. https://doi.org/10.1016/j.ijpharm.2016.04.028

Umerska, A., Mouzouvi, C. R. A., Bigot, A., & Saulnier, P. (2015). Formulation and nebulization of fluticasone propionate-loaded lipid nanocarriers. International Journal of Pharmaceutics, 493(1-2), 224–232. https://doi.org/10.1016/j.ijpharm.2015.07.008

Urimi, D., Widenbring, R., Pérez García, R. O., Gedda, L., Edwards, K., Loftsson, T., & Schipper, N. (2021). Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery. International Journal of Pharmaceutics, 602, 120640. https://doi.org/10.1016/j.ijpharm.2021.120640

Westedt, U., Barbu-Tudoran, L., Schaper, A. K., Kalinowski, M., Alfke, H., & Kissel, T. (2002). Deposition of nanoparticles in the arterial vessel by porous balloon catheters: Localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS PharmSci, 4(4), E41. https://doi.org/10.1208/ps040441

PDF
Full Text
Export Citation

View Dimensions


View Plumx



View Altmetric



3
Save
0
Citation
155
View
0
Share