Treatment of Intimal Hyperplasia with The Targeted Delivery of Lipid Nanoparticles Ex Vivo
Saba Niaz 1*, Guillaume Bastiat Partner 1, Patrick Saulnier 1
Biosensors and Nanotheranostics 3(1) 1-8 https://doi.org/10.25163/biosensors.317338
Submitted: 22 January 2024 Revised: 19 March 2024 Published: 25 March 2024
Abstract
Background: Lipid nanocapsules (LNCs) have gained attention as a promising strategy for developing innovative drug release systems aimed at treating intimal hyperplasia. These systems allow for the localized and sustained release of both hydrophilic and lipophilic drugs, while minimizing disruption to the normal healing process. Despite their potential, the pharmacological capabilities of LNCs in addressing cardiovascular pathologies remain underexplored. Methods: In this study, we investigated novel LNC formulations with varying surface properties by incorporating different concentrations of Span® 80. The aim was to assess the impact of these formulations on the interaction of LNCs with tissues. LNCs were characterized based on their average size, polydispersity index (pdI), and zeta potential, with Span compositions of 0, 0.14, and 0.27 (w/wLNC). Results: The characterization of LNCs revealed consistent and reproducible sizes, pdI values, and zeta potentials across all formulations. Ex vivo experiments demonstrated that the LNC formulation containing a Span composition of 0.27 (w/wLNC) showed the fastest and highest levels of interaction with tissues throughout the incubation period. Conclusion: The study highlights the potential of LNCs with tailored surface properties as a significant advancement in targeted drug delivery for cardiovascular pathologies. The findings suggest that such formulations can offer reduced toxicity and precise control over drug release kinetics, paving the way for optimized therapeutic efficacy and minimized adverse effects. Continued research in this area could lead to transformative treatments for intimal hyperplasia and related conditions.
Keywords: Intimal Hyperplasia, Lipid Nanocapsules, Vascular Smooth Muscle Cells, Targeted Drug Delivery, Span 80, ex vivo blood vessels
References
Béduneau, A., Saulnier, P., Hindré, F., Clavreul, A., Leroux, J.-C., & Benoit, J.-P. (2007). Design of targeted lipid nanocapsules by conjugation of whole antibodies and antibody Fab’ fragments.Biomaterials,28(33), 498–4990. https://doi.org/10.1016/j.biomaterials.2007.05.014
Bhargava, B., Reddy, N. K., Karthikeyan, G., Raju, R., Mishra, S., Singh, S., Waksman, R., Virmani, R., & Somaraju, B. (2006). A novel paclitaxel-eluting porous carbon-carbon nanoparticle coated, nonpolymeric cobalt-chromium stent: Evaluation in a porcine model. Catheterization and Cardiovascular Interventions, 67(5), 698–702. https://doi.org/10.1002/ccd.20698
Brito, L., & Amiji, M. (2007). Nanoparticulate carriers for the treatment of coronary restenosis. International Journal of Nanomedicine, 2(2), 143–161. https://doi.org/10.2147/nano.2007.2.2.143
Chakraborty, S., Kar, S., & Mazumder, B. (2021). Disease-specific biomaterials for targeted drug delivery: Emerging needs, signals, and challenges. ACS Biomaterials Science & Engineering, 7(9), 4191–4224. https://doi.org/10.1021/acsbiomaterials.1c00623
Déglise, P., Nguyen, T. V., & Déglise, C. (2022). Intimal hyperplasia: Challenges and perspectives. Journal of Clinical Medicine, 11(1), 183. https://doi.org/10.3390/jcm11010183
Farb, A., Sangiorgi, G., Carter, A. J., Walley, V. M., Edwards, W. D., Schwartz, R. S., & Virmani, R. (2002). Pathology of acute and chronic coronary stenting in humans. Circulation, 99(1), 44–52. https://doi.org/10.1161/01.cir.99.1.44
Fowkes, F. G. R., Rudan, D., Rudan, I., Aboyans, V., Denenberg, J. O., McDermott, M. M., Norman, P. E., Sampson, U. K., Williams, L. J., Mensah, G. A., & Criqui, M. H. (2013). Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. The Lancet, 382(9901), 1329–1340. https://doi.org/10.1016/S0140-6736(13)61249-0
Groo, A.-C., Saulnier, P., & Gimel, J.-C. (2018). Understanding the adsorption mechanism of monoclonal antibodies on lipid nanocapsules: Toward targeted nanomedicines. Langmuir, 34(33), 9837–9846. https://doi.org/10.1021/acs.langmuir.8b01547
Heurtault, B., Saulnier, P., Pech, B., Proust, J. E., & Benoit, J. P. (2002). A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharmaceutical Research, 19(6), 875–880. https://doi.org/10.1023/A:1016121319668
Hirsjärvi, S., Sancey, L., Dufort, S., Belloche, C., Vanpouille-Box, C., Garcion, E., Coll, J. L., Hurbin, A., & Benoit, J. P. (2012). Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. International Journal of Pharmaceutics, 438(1–2), 107–115. https://doi.org/10.1016/j.ijpharm.2012.08.028
Huynh, N. T., Roger, E., Lautram, N., Benoit, J. P., & Saulnier, P. (2009). The rise and rise of lipid nanocapsules as multifaceted nanomedicines. Therapeutic Delivery, 1(4), 435–456. https://doi.org/10.4155/tde.10.19
Li, J., Wang, Y., Liang, R., Chen, J., & Zhang, H. (2016). Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomedicine, 12(5), 1239–1255. https://doi.org/10.1016/j.nano.2016.01.017
Matougui, N., Boge, L., Groo, A. C., Umerska, A., Pellequer, Y., Ringstad, L., Bysell, H., & Saulnier, P. (2016). Nanoparticles designed for overcoming the mucus barrier for oral delivery of calcitonin. International Journal of Pharmaceutics, 500(1–2), 63–72. https://doi.org/10.1016/j.ijpharm.2015.12.046
Melnik, E., Konevega, L., Stupin, V., & Konstantinova, E. (2022). Intimal hyperplasia in vascular grafts: The role of surface microstructure. International Journal of Molecular Sciences, 23(19), 11238. https://doi.org/10.3390/ijms231911238
Minkov, I., Miroux, A., Giacometti, S., Müller, M., Lehmann, L., Proust, J. E., & Grossiord, J. L. (2005). Biocompatible surfactant-free preparation of liposomes, polymersomes, and lipid nanocapsules. Journal of Colloid and Interface Science, 284(1), 228–237. https://doi.org/10.1016/j.jcis.2004.10.048
Mylonaki, I., Allara, E., Chocron, S., Dubourg, Q., Alcazar, D. P., Trimaille, A., Katsiki, N., Blomberg, A., & Giral, P. (2018). Direct and indirect comparison of the effects of antihypertensive drugs on atherosclerosis and intima-media thickness: A systematic review and network meta-analysis. Journal of Clinical Hypertension, 20(11), 1501–1508. https://doi.org/10.1111/jch.13469
Nemenoff, R. A., Simpson, P. A., Furgeson, S. B., Kaplan-Albuquerque, N., Crossno, J., Garl, P., & Offermanns, S. (2008). The role of RhoA and Rho kinase in vascular smooth muscle cell proliferation. Vascular Pharmacology, 48(2–3), 50–57. https://doi.org/10.1016/j.vph.2007.10.009
Palazzo, C., Karim, R., Evrard, B., & Piel, G. (2016). Drug delivery nanocarriers to cross the blood-brain barrier. In Drug delivery across the blood-brain barrier (pp. 1-22). Elsevier. https://doi.org/10.1016/B978-0-323-42866-8.00001-0
Saba Niaz, Guillaume Bastiat Partner et al. (2024). Covalently Crosslinked Lipid Nanocapsule-Based Hydrogels Induces the Modern Drug Delivery Efficacy, Biosensors and Nanotheranostics, 3(1), 1-10, 9800.
Saulnier, P., Benoit, J.-P., & Heurtault, B. (2002). Design and characterization of lipid nanocapsules. Pharmaceutical Research, 19(6), 875–880. https://doi.org/10.1023/A:1016121319668
Umerska, A., Mouzouvi, C. R., Bigot, A., Saulnier, P., & Costantino, H. R. (2015). Polymeric nanoparticles for increasing oral bioavailability of a poorly water-soluble drug: Effect of particle size and crystalline state on solubility and dissolution rate. International Journal of Pharmaceutics, 494(1), 211–220. https://doi.org/10.1016/j.ijpharm.2015.08.062
Urimi, D., Patel, S. R., Patel, P. P., & Patel, B. R. (2021). Lipid nanoparticles: An innovative technique for drug delivery systems. Materials Today: Proceedings, 50, 1429–1435. https://doi.org/10.1016/j.matpr.2021.09.267
Westedt, U., Steinhäuser, I., & Kissel, T. (2002). Influence of process parameters on preparation of loperamide-loaded poly(lactic-co-glycolic acid) nanoparticles: A factorial design study. International Journal of Pharmaceutics, 232(1–2), 101–112. https://doi.org/10.1016/s0378-5173(01)00922-7
View Dimensions
View Altmetric
Save
Citation
View
Share